Develop and test Web authentication
with containers

Jan Pazdziora
Sr. Principal Software Engineer
ldentity Management Engineering, Red Hat
jpazdziora@redhat.com

11th October 2016

@O0



Authentication in Web applications

Applications often start small.
In-application user, group, and role management.
Just a couple of database tables; simple logon form.
Often supported / provided by framework.
e.g. django.contrib.auth, django.contrib.admin.

Larger organizations need to authenticate users from their identity
management systems.

FreelPA / Identity Management, Active Directory, LDAP, ...

Manually maintaining copy of users and group membership in the
application not feasible.

Users from partner organizations, or public, might need access as well.



External and federated authentication

External authentication:

Kerberos, SSL client authentication / smart cards, one-time
passwords, ...

Federated authentication protocols:
SAML, OpenID Connect, ...
Support is often rushed in ad hoc, for the particular deployment.

Often incomplete or buggy: we've seen LDAP authentication layers
not supporting failover, or failing to verify server certificates for
LDAPS.

Maintainable approach: offload authentication operations.



Authentication in Apache HTTP Server

Module Protocol

mod_auth_gssapi Negotiate / GSS-API / Kerberos;
Impersonation

mod_ssl / mod_nss X.509 / smart-card authentication

mod _auth _mellon SAML

mod_auth_openidc OpenlID Connect

mod_authnz_pam Pluggable authentication modules (PAM)

mod_intercept form_submit Calls PAM for logon form submission

Modules can pass to applications not just raw REMOTE_USER
iInformation, but do additional user identifier, attributes, or group
membership lookups.



With external authentication ...

Familiarity with the external protocols is useful.
Especially their impact on the HTTP traffic.
401 status, repeated GET requests, redirects, ...

Setup for development and testing requires external pieces.
Kerberos Distribution Center, SAML Identity Provider, ...

DNS, /etc/hosts, and/or /etc/krb5.conf often need to be tweaked
for Kerberos testing.

Use of OS-level services like SSSD makes testing in isolated
environments hard.



Introducing Developer Setup

For testing external authentication and authorization (authn, authz) in
Web Applications.

Using the standard Apache HTTP Server front-end.
Container-based.

Available from pagure.io/webauthinfra


https://pagure.io/webauthinfra

Developer Setup Components

HTTP HTTP with
. wWww auth result app
— Apache Web = Example
server with — Django
client H-I_I-P authn/authz . . application
_ Negotiate modules application
Firefox or redirect content
browser
Kerberos
CLI
tools = _
- ipa
Kerberos FreelPA
or SAML + SAML IdP

redirects



Developer Setup Details

WWW app
client

Ipa
ipa: FreelPA with DNS server + Ipsilon SAML IdP.
client: IPA-enrolled, Firefox with Negotiate enabled.
WWW:
IPA-enrolled.
Also configured as SAML SP.

Apache with mod_auth_gssapi, mod_authnz_pam,
mod_intercept form_submit, and mod lookup identity.

app: Example app demonstrating authn and authz results.

All containers run in isolated domain .example.test.



Developer Setup Internals

WWW app
client

Ipa
Containers are based on Fedora 24.
Except for app, all containers are all systemd-based.

The setup assumes that FreelPA container image freeipa-server
exists and uses it as base for the ipa image.

The first run takes a couple of minutes as ipa-server-install is run.
We could run Ipsilon in separate container ... but is it worth it?

Firefox is started via ssh -X to avoid mounting /tmp/.X11-unix.



Developer Setup Alternatives: SAML

. SAML WWWwW app
client

Ipa
WWW:

Apache can be reconfigured to use mod_auth_mellon for SAML
instead of GSS-API/Kerberos.

Template configuration provided in src/www-proxy-saml.conf,.



Developer Setup Alternatives: mod wsgi

WWW

client + app via WSGI o

Ipa
WWW:

The application can be run in the Apache container via mod_wsqgi
instead of in separate container.

Use dockerfile: Dockerfile.www-with-app for the www service in
docker-compose.yml.

app: not needed / used.



Developer Setup Usage

The setup can be used to study the protocol interactions.

However, the primary goal is to assist with application development
and testing.

The app service can be removed from the setup.



Usage Options: HTTP Proxy

HTTP proxy developed app

WWW _
= listens for HTTP requests

client

Ipa

Application being developed runs behind the authentication proxy.

The application can run on the same host, in a different container, or on
different machine.

Edit Proxy* in www-data/www. conf.

Adjust the configuration to match application's logon locations and
workflow.



Usage Options: Application Embedded

WWW bind mounted
with WSGI, q | q
client passenger, or similar eveloped app
made available into
Ipa the www container

Application can run in the www container, with/via Apache server.

Extending the Dockerfiles likely be needed, to get run environment to
the container.

Example in src/Dockerfile.www-with-app.
Application code installed or bind-mounted.

Adjust the configuration to match application's logon locations and
workflow.



Usage Options: Own Client

= HTTP developed app
WWW

own _ _client or «—i mount developed app

client
ipa

The developer setup can be used by any client.

It might need to be pointed to the hostnames used in the setup.

DNS server in the ipa container may help.

Useful for automation / continuous integration.



Ildeas for future work (tentative)

More example applications — ruby, PHP, perl, ...
Contributions are welcome.
OpenlID Connect.
Once Ipsilon release supporting it makes it into Fedora 24.
Keycloak instead of Ipsilon.

Explore a way to run ipa-server-install (which needs to be run
under systemd) in build time.

Explore other orchestration mechanisms beyond docker-compose.

Dependency on freeipa-server image — flexibility or hindrance?



Conclusion

Container-based Web application authentication developer setup is
available.

For exploring and developing with external authentication.
GSS-API/Kerberos and SAML currently supported.
We welcome feedback!

We welcome patches!



References

pagure.io/webauthinfra
www.adelton.com/webauthinfra/presentation/
github.com/adelton/docker-freeipa

www.freeipa.org/page/Web_ App_ Authentication


https://pagure.io/webauthinfra
https://www.adelton.com/webauthinfra/presentation/
https://github.com/adelton/docker-freeipa
http://www.freeipa.org/page/Web_App_Authentication

