
Develop and test Web
authentication with containers

Jan Pazdziora, Red Hat

1. Authentication in Web applications

Web applications that aim to be used in large enterprises and organizations need to be able
to use user identities from various external identity sources within those organizations,
like FreeIPA/IdM or Active Directory domains, or in case of federated setups even make
use of user identities provided by completely independent entities — customer or partner
organizations. Users are then authenticated via authentication methods and protocols
like Generic Security Service Application Program Interface (GSS-API) / Kerberos or
Security Assertion Markup Language (SAML). External identity sources can also hold and
make available additional pieces of information for authorization of access to those Web
applications, for instance user group membership which can map to application-specific
user roles.

Many Web applications start small. Initially they might be targeted just at
limited number of users so they tend to include some in-application user and
user group management and handling. That is often already implemented by
frameworks or development environments. For example, the Django Web framework
populates its default startproject configuration result with django.contrib.auth
and django.contrib.admin, supporting both authentication and internal user identity
management features out of the box.

When external authentication is needed by first large deployment, support is quickly
added for that particular protocol or mechanism, often addressing the bare minimum
of features. LDAP backend support might get quickly added but without proper TLS or
failover handling. Similar approach might repeat for each next protocol. Web frameworks
can make this work easier but the applications developers still need to be on the lookout
for new protocol requirements.

2. Offloading authentication operations

To minimize the impact that the new and evolving authentication requirements have on the
development team, it is often beneficial to move the authentication operations out of the
application and framework code, to a front end HTTP server, and extend the application
to be able to consume the authentication and authorization results.

When Apache HTTP Server is used as the authentication front end, wealth of modules can
be used for various external authentication mechanisms:

Module Protocol
mod_auth_gssapi Negotiate / GSS-API / Kerberos
mod_ssl / mod_nss SSL client / X.509 / smart-card authentication
mod_auth_mellon SAML
mod_auth_openidc OpenID Connect
mod_authnz_pam Pluggable authentication modules (PAM)

The authentication for the particular application deployment can be configured in the
Apache HTTP Server to use a certain module or module combination, even if the
application developer team never tried that setup themselves. All that is needed is for the
application to get the authentication result and act accordingly.

Of course, some rudimentary familiarity of the external protocols and their impact
especially on the HTTP traffic is useful. In case of Negotiate / Kerberos authentication,
HTTP responses status 401 together with WWW-Authenticate: Negotiate response
header drives the authentication flow. For SAML or OpenID Connect, HTTP redirects to
authentication providers are used. With SSL/TLS, the authentication happens (and can
fail) even before the HTTP traffic is processed, while the connection is being established.
When developing and testing, some external services are needed for most protocols,
and for cases like Kerberos, configuration on clients might be needed as well. That
configuration might however clash with the production Kerberos and other configuration
used on developers' machines.

To help developers get experience with these environments and protocols, container-
based Web application authentication developer setup with isolated "multihost" setup was
created.

3. Web application authentication developer setup

As of October 2016, the default setup consists of four containers:

Container Purpose
ipa FreeIPA identity management server + DNS server + Ipsilon SAML

Identity Provider (IdP)
www Apache HTTP Server authentication front-end; authentication via

Apache modules
client Firefox and Kerberos command-line tools on IPA-enrolled machine
app Example Django application which demonstrates not just

authentication behaviour but also handling of additional user
attributes and use of group membership for application roles

They all run in isolated domain .example.test, managed by the integrated DNS server in
the ipa container.

3.1. Kerberos operation

By default, Kerberos authentication via mod_auth_gssapi in HTTP authentication proxy is
enabled, which leads to the following HTTP Negotiate authentication workflow:

HTTP

⟹

⟸

HTTP Negotiate

www

Apache

HTTP with
auth result

⟹

⟸

application
content

app

Example
application

client

Firefox

⟹

Kerberos

⟸

ipa

FreeIPA

In addition to the authentication, mod_lookup_identity with SSSD is configured in the www
container to retrieve additional attributes about the authenticated user, like name, email
address, or user group membership, and pass it to the application.

The client container runs SSH daemon so it is possible to start Firefox via ssh -X. In
the same container (thus on http://localhost/ from the Firefox point of view) there is Web
front-end to some Kerberos utilities: kinit, klist, kpasswd, kdestroy. That makes it easy
to study the behaviour of HTTP Negotiate and Kerberos credential caches without diving
into command line. That of course is also available and so is curl.

3.2. SAML operation

The source repository contains alternative configuration of the Apache HTTP Server
authentication front-end, SAML Service Provider (SP) using mod_auth_mellon. The www
container itself is already configured as SP for the IdP in the ipa container, so moving the
setup from Kerberos to SAML has only two steps:

• Copy the provided Apache config file to the container data directory.

• Restart the Apache HTTP Server daemon.

Instead of HTTP Negotiate authentication and Kerberos communication, HTTP redirects
for the SAML protocol will be then used:

 www app
client

SAML HTTP
redirects

⇙⇗

⇘⇖ ipa

3.3. Application on the HTTP server machine

Many Web application deployments run the application on the same machine as the
HTTP end point. The developer setup supports this runtime style as well. The example
application can run in the www container via mod_wsgi, instead of its own container via
HTTP proxying:

www

+ app via WSGI
 app client

ipa

This setup allows studying and debugging interaction of applications deployed under the
Apache HTTP Server, where authentication results and additional information is passed
via environment variables and similar mechanisms, instead of HTTP request headers.

As for the authentication itself, both Kerberos and SAML configurations can be used.

4. Developer setup usage

So far we have been describing the stock developer setup and its use with the example
application. While that can be useful for learning about the protocol internals, developers
will be more interested in ways of using the setup for their own applications that they
develop. Let us look at the options. In all cases, the app container is no longer needed
and can be disabled altogether.

4.1. HTTP proxy

Let us assume that the developed or tested application runs at its own HTTP endpoint. By
merely changing the target of the default proxy directives

ProxyPass / http://app.example.test/

ProxyPassReverse / http://app.example.test/

the authentication front-end in the www container can be pointed to application running
on the host, in different container, or on completely different machine.

www
HTTP proxy

⟹

developed app

listens for HTTP requestsclient

ipa

For correct operation, the configuration of the logon locations (URIs) will need to be tuned
as well, to match the workflow and locations expected and supported by the application.

4.2. Application under the HTTP server

As mentioned earlier, in many deployment cases, applications will be executed by and
under the HTTP server context, for instance with mod_wsgi of Apache HTTP Server. In that
case, the best use of the developer setup is to run the application in the www container.
Extending and rebuilding the setup might be needed to bring in packages of the required
modules, language interpreters, or runtime environments — Ruby / passenger, Java /
tomcat / AJP, etc.

The code of the developed application, potentially the working tree checkout with the
source code, can then be bind-mounted to the www container to the location where the
Apache modules will be configured to find it:

bind mountedwww

with WSGI,
passenger, or similarclient

⟻

ipa

developed app

made available into
the www container

Alternatively, for example for testing, the application code can be installed to the container
image during build time. Like in the previous case, the logon locations (URIs) as seen by
the Apache HTTP Server and as expected by the application will need to be configured
to match the application workflow.

4.3. Using own clients

The developer setup includes client container with Firefox and Kerberos tools installed,
IPA-enrolled and part of the example.test domain. That allows for simple start, without
additional configuration needed.

For development and use in continuous integration and other automated environments,
other clients can of course be also used. They might need additional configuration to
properly resolve hostnames of the servers in the developer setup or find the Kerberos
infrastructure. For this, the integrated DNS server in the ipa container can be used. The
client container automatically IPA-enrolls itself, so keytab file can be copied to those other
sources.

⟹ HTTP developed app
www

or ⟻ mount developed app
own

client ⟹ client

ipa

5. Developer setup internals

As of October 2016, the containers of the setup are based on Fedora 24. Except for the app
container, they are all systemd-based: the ipa container runs multiple services and both

www and client IPA-enroll themselves with ipa-client-install which needs systemd
to be run.

The first execution of the setup takes a couple of minutes (depending on the performance
of the machine it is run on) because the FreeIPA server needs to be configured, using ipa-
server-install. The configuration and data is then stored in the ipa-data/ directory, so
subsequent starts are significantly faster.

The other containers also configure themselves and their configuration and data are
stored in www-data/, client-data/, and app-data/, respectively.

The client container is configured to start Firefox browser via ssh -X, rather than bind-
mounting /tmp/.X11-unix. This decision was made to support more flexible and versatile,
albeit potentially slower, usage.

The Web application authentication developer setup is available under the Apache
License, Version 2.0.

6. Building the developer setup

The developer setup is defined as a Docker Compose application. The repository contains
docker-compose.yml which describes the individual services — containers. Those are
defined in src/Dockerfile.* files.

The ipa container's src/Dockerfile.ipa expects that freeipa-server container image
is available. It is possible to build the image from sources from the docker-freeipa
repository, pull built images from Docker registry and tag as freeipa-server, or tweak
the FROM line in the Dockerfile to name a specific image to use.

The container images for the setup are then built with single

$ docker-compose build

command.

7. Running the developer setup

Once the images are built, command

$ docker-compose up

will start the containers. The output will likely begin with lines similar to

Creating webauthinfra_ipa_1
Creating webauthinfra_app_1
Creating webauthinfra_www_1
Creating webauthinfra_client_1
Attaching to webauthinfra_app_1, webauthinfra_ipa_1, webauthinfra_www_1, webauthinfra_client_1
app_1 | + echo password32345
app_1 | + cp -p /var/www/django/project/db.sqlite3 /data/db
app_1 | + cd /var/www/django/project
app_1 | + python manage.py shell
app_1 | ++ cat /data/admin-password
app_1 | + echo 'from django.contrib.auth.models import User; User.objects.create_superuser('\''admin'\'', '\''admin@example.test'\'', '\''password32345'\'')'
app_1 | Python 2.7.12 (default, Aug 9 2016, 15:48:18)
app_1 | [GCC 6.1.1 20160621 (Red Hat 6.1.1-3)] on linux2
app_1 | Type "help", "copyright", "credits" or "license" for more information.
app_1 | (InteractiveConsole)
app_1 |
app_1 | + grep '^SECRET_KEY' project/settings.py

app_1 | + cd /var/www/django/project
app_1 | + REMOTE_USER_VAR=HTTP_X_REMOTE_USER
app_1 | + python manage.py runserver app.example.test:80
ipa_1 | Configuring ipa.example.test ...
ipa_1 | /usr/sbin/ipa-server-configure-first
www_1 | Waiting for FreeIPA server (HTTP Server) ...
client_1 | Waiting for FreeIPA server (HTTP Server) ...
ipa_1 |
ipa_1 | The log file for this installation can be found in /var/log/ipaserver-install.log
ipa_1 | ==
ipa_1 | This program will set up the FreeIPA Server.
ipa_1 |
ipa_1 | This includes:
ipa_1 | * Configure a stand-alone CA (dogtag) for certificate management

It shows that the app container quickly finishes its configuration, and www and client
wait for ipa container to configure the FreeIPA server, to then allow them to IPA-enroll
and finish their configuration.

After the startup finishes, FreeIPA server's admin password can be found in the ipa-
data/admin-password file and private SSH key of user developer in the client container
is stored in client-data/id_rsa. To start process in the client container, we find out
its IP address with docker inspect webauthinfra_client_1 and the SSH to it as user
developer:

$ ssh -i client-data/id_rsa developer@172.18.0.5

By default the SSH daemon also listens on port 55022 on the host, so

$ ssh -i client-data/id_rsa -p 55022 developer@localhost

is also possible.

To start the Firefox browser in the setup, we enable the X11 forwarding:

$ ssh -X -i client-data/id_rsa -p 55022 developer@localhost firefox -no-remote

The browser will open four tabs: the authenticated front-end to the example application,
FreeIPA and Ipsilon IdP server logon pages, and a Web interface to Kerberos commands
in the client container:

The Web application authentication developer setup is now ready in its default, Kerberos-
enabled configuration.

8. Conclusion and future work

The container-based Web application developer setup provides an isolated environment
which helps to study, develop, and test external authentication and authorization in Web
applications.

In the future, configuration templates for more authentication methods might be added.
We will also look at providing another example application written in different language /
framework. Different software might be installed and configured in future versions to
achieve the same functionality, for instance in the SAML IdP area.

Since the setup uses well-known realm, domain, and host names, it might be possible
to run the initial FreeIPA server configuration (ipa-server-install) in build time.
Unfortunately, due to the systemd-based nature and the build time environment, those
investigations have not so far resulted in success. We will likely revisit that option in the
future.

References

Web application authentication developer setup sources. https://pagure.io/webauthinfra

Developer setup presentation. https://www.adelton.com/webauthinfra/presentation/

FreeIPA container images sources. https://github.com/adelton/docker-freeipa

Automated builds of FreeIPA container images. https://hub.docker.com/r/adelton/
freeipa-server/

Web App Authentication notes. https://www.freeipa.org/page/Web_App_Authentication

https://pagure.io/webauthinfra
https://www.adelton.com/webauthinfra/presentation/
https://github.com/adelton/docker-freeipa
https://hub.docker.com/r/adelton/freeipa-server/
https://hub.docker.com/r/adelton/freeipa-server/
https://www.freeipa.org/page/Web_App_Authentication

