
Spacewalk on PostgreSQL

Jan Pazdziora
Principal Software Engineer

Satellite Engineering, Red Hat

Developer Conference 2011
12th February 2011

Brno, Czech Republic



What is Spacewalk?

Spacewalk on PostgreSQL Jan Pazdziora 2 / 19

■ System management system, with WebUI and
XMLRPC API.

■ The project is the upstream for Red Hat Network
Satellite product (and SuSE Manager).

■ Satellite went open source in June 2008.
■ Written in Java, Python, and Perl.
■ 700+ thousand lines of code (and 2M+ lines of

markup).
■ http://spacewalk.redhat.com/
■ https://fedorahosted.org/spacewalk/

http://spacewalk.redhat.com/
https://fedorahosted.org/spacewalk/


The database backend

Spacewalk on PostgreSQL Jan Pazdziora 3 / 19

■ Spacewalk traditionally runs on Oracle database.
■ To make the solution completely open source,

PostgreSQL support is under way.
■ We want to support both databases. This is not a

"rewrite and forget Oracle" effort.
.

■ We will go through the history and state of the
port, will list issues that we hit, show examples,
and hopefully inspire you to contribute or use our
experience in migration of your legacy applications.



PostgreSQL port timeline

Spacewalk on PostgreSQL Jan Pazdziora 4 / 19

■ June 2008: the work started.
■ Contributions from EnterpriseDB and Tom Lane.

■ August 2009: Spacewalk 0.6 had the bits in.
■ Required manual steps to even setup Spacewalk.
■ No tracking of changes in the Oracle land.

■ Late 2009: Work slowed down.
■ Summer 2010: Revisited.

■ Made the installation and setup pass automatic.
■ Focus on sustainability: made it easy to see what

had changed in Oracle.



PostgreSQL port timeline (cont'd)

Spacewalk on PostgreSQL Jan Pazdziora 5 / 19

■ November 2010: Spacewalk 1.2.
■ Released with support for PostgreSQL.

■ And with porting guide, kudos to Lukáš
Zapletal.

■ Feature subset.
■ Stunned silence. Virtually no contributions.

■ February 2011: Spacewalk 1.3.
■ Minor fixes.
■ You could upgrade from 1.2.



The PostgreSQL port as of today

Spacewalk on PostgreSQL Jan Pazdziora 6 / 19

■ Spacewalk 1.2 on PostgreSQL supports:
■ content sync with satellite-sync and spacewalk-

repo-sync
■ rhnpush
■ client registration
■ yum operations

■ Spacewalk 1.3 added:
■ Spacewalk Proxy activation
■ the database schema upgradable



Package dependencies

Spacewalk on PostgreSQL Jan Pazdziora 7 / 19

■ We had to split out the dependencies on Oracle-
specific packages (perl-DBD-Oracle and friends).

■ Spacewalk is now installed either as
yum install spacewalk-oracle

or
yum install spacewalk-postgresql



Helper CLI

Spacewalk on PostgreSQL Jan Pazdziora 8 / 19

■ When populating and upgrading database schema,
we use the native SQL codes (maybe generated
from common syntax by chameleon).

■ At the same time, the connect information to the
database is already stored in configuration file.

■ We've created spacewalk-sql to do the right thing
with both backends, connecting to Oracle with
sqlplus or to PostgreSQL with psql.



Schema definition

Spacewalk on PostgreSQL Jan Pazdziora 9 / 19

■ Some things are the same on both Oracle and
PostgreSQL: CREATE VIEW.

■ Some things are similar with subtle differences:
CREATE TABLE where the column types differ,
varchar2 vs. varchar, date vs. timestamp.
■ We used tool chameleon.
■ Reformatted the definition, lost named

constraints.
■ Just use sed.

■ Need to have "compatibility" objects: dual,
numtodsinterval, nvl, nextval.



Schema definition (cont'd)

Spacewalk on PostgreSQL Jan Pazdziora 10 / 19

■ Some things need to be written again: packages vs.
schemas, procedures, triggers.
■ Need to ensure that the "second class citizen"

sources stay in sync with the "first class".
-- oracle equivalent source sha1 2284fa9b8b...

■ And enforce it (in .rpm build time).
■ Schema upgrades — common sources or duplicate

sources. Again, ensure consistency.



Examples

Spacewalk on PostgreSQL Jan Pazdziora 11 / 19

https://fedorahosted.org/spacewalk/wiki/
PostgreSQLPortingGuide
Functions nvl, nvl2, decode, ...
■ You can either create the functions in PostgreSQL.
■ Or replace with CASE WHEN ... THEN ... END.
Select without FROM, and dual
■ In Oracle, there is always table dual with single

record.
■ In PostgreSQL, SELECT without FROM clause can be

used instead.
■ We just create dual on PostgreSQL.

https://fedorahosted.org/spacewalk/wiki/PostgreSQLPortingGuide
https://fedorahosted.org/spacewalk/wiki/PostgreSQLPortingGuide


Examples (cont'd)

Spacewalk on PostgreSQL Jan Pazdziora 12 / 19

Syntax sugar
■ The AS keyword is needed for column aliases in

PostgreSQL.
■ And subqueries need to be named with aliases

there.
Outer joins
■ Oracle syntax: FROM TAB1, TAB2 WHERE TAB1.ID

= TAB2.TAB1_ID (+)

■ ANSI syntax: FROM TAB1 LEFT OUTER JOIN TAB2
ON TAB1.ID = TAB2.TAB1_ID



Examples (cont'd)

Spacewalk on PostgreSQL Jan Pazdziora 13 / 19

Date types and arithmetics
■ If your application already uses timestamps, good.
■ If you use date type and sysdate: beware that

date in Oracle has precision up to seconds, in
PostgreSQL up to days. Type date in Oracle has
arithmetics, adding 1 adds one day.

■ We have replaced sysdate with
current_timestamp, but with great care.

■ We also had to craft functions for date to seconds
(epoch) conversion, and back.



Examples (cont'd)

Spacewalk on PostgreSQL Jan Pazdziora 14 / 19

Triggers
■ If the tg_op in PostgreSQL is INSERT, we cannot

even touch old.
Procedure invocation from Java
■ Stored procedures need to be called as

{ call procx(:user_id); }

instead of
begin procx(:user_id); end;



Examples (cont'd)

Spacewalk on PostgreSQL Jan Pazdziora 15 / 19

Anonymous PL/(pg)SQL
■ Invocation of anonymous procedural SQL blocks are

not supported by PostgreSQL at all.
■ The ideal solution would be to rewrite them all to

functions and procedures.
■ We've addressed the issue by adding a hack to our

database layer when SHA1 of the PL/pgSQL body
is computed and it is used as part of procedure
name which gets created on the fly (if it does not
yet exist) and then called.



Examples (cont'd)

Spacewalk on PostgreSQL Jan Pazdziora 16 / 19

DISTINCT and ORDER BY
■ PostgreSQL does not like

select distinct a, b, c, label
from rhnchannel
order by upper(label)

■ We used subselect.
rownum
■ Oracle has a special pseudocolumn rownum

which can be used to limit resultset, similar to
PostgreSQL's LIMIT.

■ We've changed the logic.



Examples (cont'd)

Spacewalk on PostgreSQL Jan Pazdziora 17 / 19

User types
■ When referencing fields of composite types,

parentheses are needed:
select data.id, (data.evr).version from data

■ Methods are not supported by PostgreSQL, so we
just use global functions
select evr_t_as_vre_simple(data.evr) from data

instead of
select data.evr.as_vre_simple() from data



Examples (cont'd)

Spacewalk on PostgreSQL Jan Pazdziora 18 / 19

nextval
■ In Oracle, nextval is a method which is called on

the sequence object:
select rhnpackage_seq.nextval from dual

In PostgreSQL, global function with sequence name
is used instead:
select nextval('rhnpackage_seq')

We just created compatibility function in Oracle to
achieve the same.



Closing remarks

Spacewalk on PostgreSQL Jan Pazdziora 19 / 19

■ Spacewalk with PostgreSQL installs and runs.
■ You can even convert your existing Spacewalk

installation with Oracle backend to use PostgreSQL.
■ Come and submit patches.
■ Or use as inspiration for your migrations.
.

■ Thank you for your attention.


