
Why I seldom file bugs against SELinux policy

Jan Pazdziora
Sr. Principal Software Engineer

OpenShift Security, Red Hat
jpazdziora@redhat.com

26th January 2018

SELinux policy in distribution

SELinux policy in distribution Jan Pazdziora 2 / 21

■ Distributions like Fedora, CentOS, or RHEL ship software in packages
(rpm).

■ By default, selinux-policy and -targeted (or -mls) packages with
SELinux policy also get installed.
■ Rules for labeling files when rpm installs them (file contexts):

/etc/selinux/targeted/contexts/files/

■ rpm -ql package | xargs ls -dZ
■ restorecon(8)

■ Rules that permit or deny interactions of processes with files,
directories, ports, and other components of the operating system.
■ sesearch(1)

AVC denials

AVC denials Jan Pazdziora 3 / 21

■ When SELinux policy does not allow application to do something ...
■ things start to fail;
■ AVC (Access Vector Cache) denial is often logged.

■ Sometimes, nothing is visibly broken, things work.
■ Yet AVC denials are still logged.

■ Is that the better situation ... or worse?
■ Who decides if what application attempted to do was correct?
■ Maybe the SELinux policy is right?

Where to find AVC denials?

AVC denials Jan Pazdziora 4 / 21

■ /var/log/audit/audit.log, search for type=AVC
■ journal via journalctl, search for AVC avc
■ setroubleshootd and sealert
■ in beaker jobs in /avc subtests

■ Let's look at some AVC denials.
■ The goal is not to point fingers but to sharpen instincts.

Application and policy mismatch

Application and policy mismatch Jan Pazdziora 5 / 21

avc: denied { read } for pid=3728 comm="abc.cgi"
 name="objects.cache" dev="dm-0" ino=2364515
 scontext=system_u:system_r:xyz_script_t:s0
 tcontext=system_u:object_r:xyz_spool_t:s0 tclass=file permissive=0

avc: denied { open } for pid=4311 comm="def.cgi"
 path="/var/spool/xyz/objects.cache" dev="dm-0" ino=2364515
 scontext=system_u:system_r:xyz_script_t:s0
 tcontext=system_u:object_r:xyz_spool_t:s0 tclass=file permissive=0

■ Someone needs to decide if their CGI scripts should be allowed to work
with the spool directory directly.

■ To check if these are allowed on the current distribution:
$ sesearch --allow -s xyz_script_t -t xyz_spool_t -c file

Application and policy mismatch

Application and policy mismatch Jan Pazdziora 6 / 21

avc: denied { execute_no_trans } for pid=9992 comm="xyzd"
 path="/usr/libexec/xyz/xyz-action" dev="dm-0" ino=5833743
 scontext=system_u:system_r:xyz_t:s0
 tcontext=system_u:object_r:xyz_exec_t:s0 tclass=file permissive=0

■ Someone needs to decide if their daemon should be allowed to call its
utility directly.

avc: denied { execute } for pid=19919 comm="xyz"
 name="prog" dev="md1" ino=57787811
 scontext=system_u:system_r:xyz_t:s0-s0:c0.c1023
 tcontext=system_u:object_r:prog_exec_t:s0 tclass=file permissive=0

■ New feature to process output of external program instead of just files.
■ Someone has to drive reflecting the new feature in the SELinux policy.
■ Possibly via SELinux boolean.

Application and policy mismatch

Application and policy mismatch Jan Pazdziora 7 / 21

avc: denied { create } for pid=1913 comm="xyz-actiond"
 name=".#abc.confd7rHli"
 scontext=system_u:system_r:xyz_actiond_t:s0
 tcontext=system_u:object_r:etc_t:s0 tclass=file permissive=0

■ If the utility should be creating config files in /etc, that needs to be
reflected in the SELinux policy.

avc: denied { create } for pid=24914 comm="xyz" name="ABC"
 scontext=system_u:system_r:xyz_t:s0
 tcontext=system_u:object_r:tmp_t:s0 tclass=file

■ Different application, creating cache under /var/tmp.
■ In the end, xyz was changed to use /var/lib/xyz/cache for its data.

Aligning application and policy

Aligning application and policy Jan Pazdziora 8 / 21

■ Very often, the name of the game is not to “fix SELinux policy”.
■ Often, the policy is not broken, to be fixed.

■ The task is to match the security policy with the service or application
deployment expectations.
■ Yes, often yet another allow (or appropriate macro) gets added to

the policy to allow the interaction.
■ But sometimes, AVC denials can point to suboptimal application

setup.

Homework assignment

Aligning application and policy Jan Pazdziora 9 / 21

■ Pick software dear to your heart.
■ Figure out what SELinux types it uses for its files on disk ...

■ ... and for processes that it starts.
■ Check what operations are allowed for those processes.
■ Focus on “weird” things like

allow xyz_t xyz_log_t:file { ... unlink write };

■ Get curious.
■ Why should an attacker be able to overwrite or remove the logs?

Unnecessary functionality

Packaging issues uncovered Jan Pazdziora 10 / 21

avc: denied { write } for pid=977 comm="xyzd"
 name="root" dev="dm-0" ino=13
 scontext=system_u:system_r:xyzd_t:s0
 tcontext=system_u:object_r:admin_home_t:s0 tclass=dir permissive=0

■ The gvfs creates ~/.cache at startup if XDG_RUNTIME_DIR is not set.
■ But xyz does not need gvfs at all, in the daemon.
■ Patched with

+Environment=GVFS_DISABLE_FUSE=1
+Environment=GIO_USE_VFS=local
+Environment=GVFS_REMOTE_VOLUME_MONITOR_IGNORE=1

Unfortunate config defaults

Packaging issues uncovered Jan Pazdziora 11 / 21

avc: denied { create } for pid=13354 comm="xyz" name="xyz"
 scontext=system_u:system_r:xyz_t:s0
 tcontext=system_u:object_r:xyz_log_t:s0 tclass=sock_file permissive=0

■ Upstream's configuration sets its socket location under /var/log/xyz.
■ Changed to configure it under /var/spool/xyz.
■ Following the general purpose of directories brings order and makes the

setup more secure.

Executable memory

Application issues uncovered Jan Pazdziora 12 / 21

avc: denied { execmem } for pid=805 comm="xyzd"
 scontext=system_u:system_r:xyz_t:s0
 tcontext=system_u:system_r:xyz_t:s0 tclass=process permissive=0

■ Patched with
-LINKFLAGS="%{?__global_ldflags}"
+LINKFLAGS="%{?__global_ldflags} -Wl,-z,noexecstack"

How much should the application do?

Application issues uncovered Jan Pazdziora 13 / 21

avc: denied { module_load } for pid=12682 comm="modprobe"
 scontext=system_u:system_r:xyz_t:s0
 tcontext=system_u:system_r:xyz_t:s0 tclass=system permissive=0

■ The daemon calls modprobe directly.
■ If compromised, different module name can be passed to it.

■ Perhaps xyz_t should not be allowed to load kernel modules at all.
■ A single-purpose helper program with domain transition just to load

specific module might be safer approach.
■ Or the module can be loaded before the daemon gets started

(systemd service setup).

Application too eager to list directory

Application issues uncovered Jan Pazdziora 14 / 21

avc: denied { getattr } for pid=28229 comm="xyz"
 path="/etc/group.lock" dev="dm-1" ino=135358895
 scontext=system_u:system_r:xyz_t:s0
 tcontext=unconfined_u:object_r:shadow_t:s0 tclass=file

■ AVC denial was logged while no requests were being processed by xyz.
■ Application used inotify on /etc.
■ It tried to stat any file that got changed, even if it only cared about

resolv.conf.

Potential shell command injection

Application issues uncovered Jan Pazdziora 15 / 21

avc: denied { execute } for pid=1938 comm="xyz"
 name="bash" dev="vda1" ino=5442
 scontext=system_u:system_r:abc_t:s0
 tcontext=system_u:object_r:shell_exec_t:s0 tclass=file permissive=0

■ I've grepped xyz sources and I do not see an explicit call to shell.
■ Maybe single-parameter system or exec call in scripting language is

used where multi-parameter one would avoid shell invocation?

Filehandle leak

Application issues uncovered Jan Pazdziora 16 / 21

avc: denied { write } for pid=11813 comm="abc"
 path="/tmp/xyz.lock" dev=dm-0 ino=1048770
 scontext=unconfined_u:unconfined_r:abc_t:s0-s0:c0.c1023
 tcontext=unconfined_u:object_r:user_tmp_t:s0 tclass=file

■ The xyz created lock file and let its filehandle leak to abc.
■ Patched with

-LOG_LOCK = open(lockfile(), 'w')
+LOG_LOCK = open(lockfile(), 'we')

Bug in config code

Application issues uncovered Jan Pazdziora 17 / 21

avc: denied { read } for pid=26234 comm="xyz"
 path="/.xyz_data/7Ggn3Ecq/data" dev="dm-1" ino=1835032
 scontext=system_u:system_r:abc_t:s0-s0:c0.c1023
 tcontext=system_u:object_r:root_t:s0 tclass=file permissive=0

■ The setup script was using uninitialized $HOME
■ Patched with

+["$HOME"] || HOME=`getent passwd $ID | cut -d: -f6`
 datadir="$HOME/.xyz_dir"
-["$HOME"] || HOME=`getent passwd $ID | cut -d: -f6`

Bug in application C code

Application issues uncovered Jan Pazdziora 18 / 21

avc: denied { module_request } for pid=25312 comm="xyz"
 kmod="net-pf-0" scontext=system_u:system_r:container_t:s0:c40,c45
 tcontext=system_u:system_r:kernel_t:s0 tclass=system permissive=0

■ Application code called socket on zeroed sockaddr.
■ Patched with

+ if (!AF(addr))
+ return NULL;
 s = socket(AF(addr), SOCK_DGRAM, 0);

■ Only caught in container because containerized domains are more
restricted.

Who should get notified?

Conclusion Jan Pazdziora 19 / 21

■ These days, when the admin did not play the defaults too much, things
work with the default SELinux enforcing setup just fine.

■ Who should get notified when you see an AVC denial / “SELinux bug”?
■ Remember, the task is to ...

■ Match the security policy with the service or application deployment
expectations.

■ Package maintainers know their applications and changes in them
much better than SELinux policy maintainers.

■ When you see an AVC denial, you should notify ...
■ of all people ...

I don't file bugs against SELinux policy

Conclusion Jan Pazdziora 20 / 21

■ When I see an AVC denial, I notify ...
■ Package maintainers of the software package.
■ By filing bugzilla against the appropriate component.

And so should you!
;-)

■ Note: It's OK when after reviewing and assessing it, the component
maintainers reassign it to selinux-policy with an RFE to align the
policy with the latest application behaviour.

Further work

Conclusion Jan Pazdziora 21 / 21

■ The midterm homework: check SELinux policy of your favourite service.
■ Paul Moore's SELinux Loves Modularity DevConf.cz talk on Sunday,

January 28, 2018, at 11:00 am CET in C-D0207.
■ Provide feedback about this session:

■ sched.co/DJXc
■ jpazdziora@redhat.com

https://devconfcz2018.sched.com/event/DJXc/why-i-seldom-file-bugs-against-selinux-policy

