Why | seldom file bugs against SELinux policy

Jan Pazdziora
Sr. Principal Software Engineer
OpenShift Security, Red Hat
jpazdziora@redhat.com

DEVC@NF -

26" January 2018

@00

SELinux policy in distribution

Distributions like Fedora, CentOS, or RHEL ship software in packages
(rpm).

By default, selinux-policy and -targeted (or -mls) packages with
SELinux policy also get installed.

Rules for labeling files when rpm installs them (file contexts):
/etc/selinux/targeted/contexts/files/

rpm -gql package | xargs ls -dZ
restorecon(8)

Rules that permit or deny interactions of processes with files,
directories, ports, and other components of the operating system.

sesearch(1l)

AVC denials

When SELinux policy does not allow application to do something ...
things start to fail;
AVC (Access Vector Cache) denial is often logged.
Sometimes, nothing is visibly broken, things work.
Yet AVC denials are still logged.
Is that the better situation ... or worse?
Who decides if what application attempted to do was correct?

Maybe the SELinux policy is right?

Where to find AVC denials?

/var/log/audit/audit. log, search for type=AVC
journal via journalctl, search for AVC avc
setroubleshootd and sealert

in beaker jobs in /avc subtests

Let's look at some AVC denials.

The goal is not to point fingers but to sharpen instincts.

Application and policy mismatch

avc: denied { read } for pid=3728 comm="abc.cgi"
name="objects.cache" dev="dm-0" ino=2364515
scontext=system u:system r:xyz script_t:s0O
tcontext=system u:object r:xyz spool t:sO tclass=file permissive=0

avc: denied { open } for pid=4311 comm="def.cgi"
path="/var/spool/xyz/objects.cache" dev="dm-0" 1in0=2364515
scontext=system u:system r:xyz script t:s0
tcontext=system u:object r:xyz spool t:sO tclass=file permissive=0

Someone needs to decide if their CGI scripts should be allowed to work
with the spool directory directly.

To check if these are allowed on the current distribution:
$ sesearch --allow -s xyz script t -t xyz spool t -c file

Application and policy mismatch

avc: denied { execute no trans } for pid=9992 comm="xyzd"
path="/usr/libexec/xyz/xyz-action" dev="dm-0" ino=5833743
scontext=system u:system r:xyz t:s0
tcontext=system u:object r:xyz exec t:sO tclass=file permissive=0

Someone needs to decide if their daemon should be allowed to call its
utility directly.

avc: denied { execute } for pid=19919 comm="xyz"
name="prog" dev="mdl" 1no=57787811
scontext=system u:system r:xyz t:s0-s0:c0.cl023
tcontext=system u:object r:prog exec t:sO tclass=file permissive=0
New feature to process output of external program instead of just files.
Someone has to drive reflecting the new feature in the SELinux policy.

Possibly via SELinux boolean.

Application and policy mismatch

avc: denied { create } for pid=1913 comm="xyz-actiond"
name=".#abc.confd7rHLl1"
scontext=system u:system r:xyz actiond t:s0O
tcontext=system u:object r:etc t:sO tclass=file permissive=0

If the utility should be creating config files in /etc, that needs to be
reflected in the SELinux policy.

avc: denied { create } for pid=24914 comm="xyz" name="ABC"
scontext=system u:system r:xyz t:s0
tcontext=system u:object r:tmp t:sO tclass=file

Different application, creating cache under /var/tmp.

In the end, xyz was changed to use /var/lib/xyz/cache for its data.

Aligning application and policy

Very often, the name of the game is not to “fix SELinux policy”.
Often, the policy is not broken, to be fixed.

The task is to match the security policy with the service or application
deployment expectations.

Yes, often yet another allow (or appropriate macro) gets added to
the policy to allow the interaction.

But sometimes, AVC denials can point to suboptimal application
setup.

Homework assignment

Pick software dear to your heart.

Figure out what SELinux types it uses for its files on disk ...
... and for processes that it starts.

Check what operations are allowed for those processes.

Focus on “weird” things like
allow xyz t xyz log t:file { ... unlink write };

Get curious.

Why should an attacker be able to overwrite or remove the logs?

Unnecessary functionality

avc: denied { write } for pid=977 comm="xyzd"
name="root" dev="dm-0" ino=13
scontext=system u:system r:xyzd t:s0O
tcontext=system u:object r:admin home t:sO tclass=dir permissive=0

The gvfs creates ~/.cache at startup if XDG_ RUNTIME DIR is not set.

But xyz does not need gvfs at all, in the daemon.

Patched with

+Environment=GVFS DISABLE FUSE=1
+Environment=GI0 USE VFS=local
+Environment=GVFS REMOTE VOLUME MONITOR IGNORE=1

Unfortunate config defaults

avc: denied { create } for pid=13354 comm="xyz" name="xyz"
scontext=system u:system r:xyz t:s0
tcontext=system u:object r:xyz log t:sO tclass=sock file permissive=0
Upstream's configuration sets its socket location under /var/log/xyz.
Changed to configure it under /var/spool/xyz.

Following the general purpose of directories brings order and makes the
setup more secure.

Executable memory

avc: denied { execmem } for pid=805 comm="xyzd"
scontext=system u:system r:xyz t:s0
tcontext=system u:system r:xyz t:sO tclass=process permissive=0

Patched with

-LINKFLAGS="%{? global ldflags}"
+LINKFLAGS="%{? global ldflags} -WLl,-z,noexecstack"

How much should the application do?

avc: denied { module load } for pid=12682 comm="modprobe"
scontext=system u:system r:xyz t:s0
tcontext=system u:system r:xyz t:sO tclass=system permissive=0
The daemon calls modprobe directly.
If compromised, different module name can be passed to it.
Perhaps xyz t should not be allowed to load kernel modules at all.

A single-purpose helper program with domain transition just to load
specific module might be safer approach.

Or the module can be loaded before the daemon gets started
(systemd service setup).

Application too eager to list directory

avc: denied { getattr } for pid=28229 comm="xyz"
path="/etc/group.lock" dev="dm-1" ino=135358895
scontext=system u:system r:xyz t:s0
tcontext=unconfined u:object r:shadow t:s@ tclass=file

AVC denial was logged while no requests were being processed by xyz.

Application used inotify on /etc.

It tried to stat any file that got changed, even if it only cared about
resolv.conf.

Potential shell command injection

avc: denied { execute } for pid=1938 comm="xyz"
name="bash" dev="vdal" 1ino=5442
scontext=system u:system r:abc t:s0O
tcontext=system u:object r:shell exec t:sO tclass=file permissive=0

I've grepped xyz sources and | do not see an explicit call to shell.

Maybe single-parameter system or exec call in scripting language is
used where multi-parameter one would avoid shell invocation?

Filehandle leak

avc: denied { write } for pid=11813 comm="abc"
path="/tmp/xyz.lock" dev=dm-0 1n0o=1048770
scontext=unconfined u:unconfined r:abc t:s0-s0:c0.cl023
tcontext=unconfined u:object r:user tmp t:s0O tclass=file

The xyz created lock file and let its filehandle leak to abc.

Patched with

-LOG_LOCK

open(lockfile(), 'w'")
+L0G LOCK

open(lockfile(), 'we')

Bug in config code

avc: denied { read } for pid=26234 comm="xyz"
path="/.xyz data/7Ggn3Ecq/data" dev="dm-1" 1in0o=1835032
scontext=system u:system r:abc t:s0-s0:c0.cl023

tcontext=system u:object r:root t:s0@ tclass=file permissive=0

The setup script was using uninitialized $HOME
Patched with

+["$HOME"] || HOME= getent passwd $ID | cut -d: -f6"
datadir="$HOME/.xyz dir"

-["$HOME"] || HOME= getent passwd $ID | cut -d: -f6

Bug in application C code

avc: denied { module request } for pid=25312 comm="xyz"
kmod="net-pf-0" scontext=system u:system r:container t:s0:c40,c45
tcontext=system u:system r:kernel t:s@ tclass=system permissive=0

Application code called socket on zeroed sockaddr.

Patched with

+ if (!'AF(addr))
+ return NULL;
s = socket(AF(addr), SOCK DGRAM, 0);

Only caught in container because containerized domains are more
restricted.

Who should get notified?

These days, when the admin did not play the defaults too much, things
work with the default SELinux enforcing setup just fine.

Who should get notified when you see an AVC denial / “SELinux bug”?

Remember, the task is to ...

Match the security policy with the service or application deployment
expectations.

Package maintainers know their applications and changes in them
much better than SELinux policy maintainers.

When you see an AVC denial, you should notify ...

of all people ...

| don't file bugs against SELinux policy

When | see an AVC denial, I notify ...
Package maintainers of the software package.

By filing bugzilla against the appropriate component.

And so should you!

=)

Note: It's OK when after reviewing and assessing it, the component
maintainers reassign it to selinux-policy with an RFE to align the
policy with the latest application behaviour.

Further work

The midterm homework: check SELinux policy of your favourite service.

Paul Moore's SELinux Loves Modularity DevConf.cz talk on Sunday,
January 28, 2018, at 11:00 am CET in C-D0207.

Provide feedback about this session:
sched.co/DJXc

jpazdziora@redhat.com

https://devconfcz2018.sched.com/event/DJXc/why-i-seldom-file-bugs-against-selinux-policy

