
Replicate your identity management
Jan Pazdziora, Red Hat

1. High availability of infrastructure services

When planning and deploying pieces of infrastructure that affect performance or core
functionality of large number of machines and services in computer network, it is essential
to aim for high availability, as well as for efficient use of resources. It is often helpful when
the software itself provides admins with clear and easy way to view and manage the more
complex topologies of redundant services.

FreeIPA project is an integrated umbrella for multiple identity management related
solutions like directory server, Kerberos Key Distribution center (KDC), certificate system,
DNS server, and others. It can be used to manage identities from users, hosts, or services
to DNS records, and access control policies for Pluggable authentication modules (PAM)
or sudo. Operation of client machines and services can be tightly dependent on the
availability of the IPA server, even if the client-side System Security Services Daemon
(SSSD) is built around caching and can alleviate some of the impact of unavailable server.
Still, when new user logs in for the first time or system is accessed for the first time, their
identities (via Name Services Switch (NSS) or DNS) need to be looked up and resolved, and
authenticity and authorization of the user for given service verified. Keeping IPA server
available and accessible without network latencies is thus important.

FreeIPA has been built around multi-master replication provided by the 389 Directory
Server. The complexity of creating the replicas and managing the topology in alignment
with overall network needs used to be a hurdle that might have left some deployments in
less than optimal state. With FreeIPA releases 4.3 and 4.4, new features were introduced
that make much simpler the setup of replicas, management of the replication topologies,
as well as control over which servers the client hosts will prefer. Let's look at those features
and use cases.

2. Setting up FreeIPA replica

With older FreeIPA versions, creating new replica server involved producing GPG-
encrypted replica information file on the original master server using the Directory
Manager password. This file then had to be copied manually to the replica machine and
fed to the ipa-replica-install command, which again required the Directory Manager
password. The need to run operations on the master together with use of credentials which
were not otherwise used in standard day to day operation and management of IPA setup
posed issues in automated scenarios and provisionings of replicas.

The current versions introduce the notion of promotion of existing IPA-enrolled client to
replica, initiated from the client side, typically with admin's credentials. No operation is
needed on the master, and gone is the manual copying of the replica information file.

In fact, even the admin's credentials are not needed on the replica machine. Special
host group ipaservers is used to control the ability of machines to promote themselves
to replicas, and the ipa-replica-install command can IPA-enroll machine itself,
for example using one-time password for the host. If the admin (or some automated
provisioning process) creates host entry for new replica, lets the IPA server generate
random one-time password, and adds this new host to the ipaservers host group, the
one-time password can be used on the replica machine to both IPA-enroll it and make it
full replica.

One of the possible new workflows therefore can be:

client$ kinit admin

Password for admin@EXAMPLE.COM:

client$ ipa host-add replica.example.com --random

Added host "replica.example.com"

 Host name: replica.example.com
 Random password: ImgXN_VxNC,B
 Password: True
 Keytab: False
 Managed by: replica.example.com
client$ ipa hostgroup-add-member ipaservers --hosts=replica.example.com
 Host-group: ipaservers
 Description: IPA server hosts
 Member hosts: master.example.com, replica.example.com

Number of members added 1

replica# ipa-replica-install --password 'ImgXN_VxNC,B'
Configuring client side components
Client hostname: replica.example.com
Realm: EXAMPLE.COM
DNS Domain: example.com
IPA Server: master.example.com
BaseDN: dc=example,dc=com
...
Enrolled in IPA realm EXAMPLE.COM
Created /etc/ipa/default.conf
...
 Configuring directory server (dirsrv). Estimated time: 1 minute
 [1/43]: creating directory server user
 [2/43]: creating directory server instance
...
 [28/43]: setting up initial replication
Starting replication, please wait until this has completed.
Update in progress, 6 seconds elapsed
Update succeeded
 [29/43]: adding sasl mappings to the directory
...
 [2/2]: configuring ipa-otpd to start on boot
Done configuring ipa-otpd.

We see that the host entry and its host group membership was created from separate
IPA-enrolled machine and no commands had to be invoked on the IPA master itself.
On the replica machine, single command achieved both the IPA-enrollment, setup and
configuration of the IPA server, as well as the replication agreement and configuration.

If the replica promotion starts with already IPA-enrolled machine, we can check that the
original configuration which pointed to the master in /etc/ipa/defaults.conf

[global]
server = master.example.com
xmlrpc_uri = https://master.example.com/ipa/xml

gets updated to point to itself since the machine is now proper IPA server, after the
promotion has finished:

xmlrpc_uri = https://replica.example.com/ipa/xml

3. Replication topology management

When the first replica is created, it is obvious that there is only one replication agreement
between the original master and the new replica. But in larger deployments when there
are dozens of IPA server in multiple datacenters on different continents, the way how
replication of changes is propagated and how replication agreements are structured
becomes important. The more is not always the better here — as general rule, the number
of replication agreements on any given IPA server should not exceed four.

In older versions, it was of course possible to manage the replication agreements but the
command line tool ipa-replica-manage (and ipa-csreplica-manage, for the certificate
system replication) had to be run on the IPA server, and the configuration of replication
agreement was local to the pair of IPA servers in question.

With latest versions, all information about the replication topology, all the agreements
(called segments), is stored in the directory server schema, and thus replicated to all
servers in the domain. It is therefore possible to inspect the information with command
line tools from IPA-enrolled clients or in WebUI. And the information is not just read-only
view of the situation — when segment is created in the directory server, that information
is replicated to all servers and when it reaches the target nodes of the new segment,
establishment of new replication agreement is triggered. This is especially important
when large domain of IPA servers needs to be managed centrally, without the ability to
directly interact (with SSH) with the target IPA machines that might be in completely
different geographical location. Having a way for replication to reach the remote IPA
servers (potentially via chain of other IPA replicas) is enough to setup the replication
agreement.

Let us assume situation of four IPA servers. The existing topology can be displayed
graphically in Topology Graph in WebUI

or listed with topologysegment-find command:

ipa1$ ipa topologysuffix-find

2 topology suffixes matched

 Suffix name: ca
 Managed LDAP suffix DN: o=ipaca

 Suffix name: domain
 Managed LDAP suffix DN: dc=example,dc=test

Number of entries returned 2

ipa1$ ipa topologysegment-find domain

3 segments matched

 Segment name: ipa1.example.com-to-ipa2.example.com
 Left node: ipa1.example.com
 Right node: ipa2.example.com
 Connectivity: both

 Segment name: ipa2.example.com-to-ipa3.example.com
 Left node: ipa2.example.com
 Right node: ipa3.example.com
 Connectivity: both

 Segment name: ipa2.example.com-to-ipa4.example.com
 Left node: ipa2.example.com
 Right node: ipa4.example.com
 Connectivity: both

Number of entries returned 3

ipa1$ ipa topologysegment-find ca

1 segment matched

 Segment name: ipa1.example.com-to-ipa3.example.com
 Left node: ipa1.example.com
 Right node: ipa3.example.com
 Connectivity: both

Number of entries returned 1

Note that there are actually two replication topologies here — the domain for the IPA
domain information and ca for the certificate system data. We see that only ipa1 and ipa3
run the certificate servers and have direct replication segment for that purpose, while the
domain data is replicated via a “central” node ipa2.

If we'd like to add new segment (replication agreement) between servers ipa3 and ipa4,
we can do so from any server, via WebUI or via command line tool. On the command line,
we could use

ipa1$ ipa topologysegment-add domain ipa3.example.com-to-ipa4.example.com \
 --leftnode=ipa3.example.com --rightnode=ipa4.example.com
--
Added segment "ipa3.example.com-to-ipa4.example.com"
--
 Segment name: ipa3.example.com-to-ipa4.example.com
 Left node: ipa3.example.com
 Right node: ipa4.example.com
 Connectivity: both

If we refresh the Topology Graph on the WebUI, the new line between ipa3 and ipa4 will
be shown there as well.

It is worth noting that segment can be added only between nodes that already act in given
role. For instance, if we want to add replication agreement between ipa3 and ipa4 for the
ca suffix for the certificate system, we first have to enable and configure the certificate
system server on ipa4 with ipa-ca-install. That will establish replication agreement
with the currently configured CA host (ipa1) and only then we can add the next segment.
Running ipa topologysegment-find or refreshing the page with the Topology Graph in
WebUI would confirm our new replication topology:

4. DNS-based locations

So far we have focused on replica setup and management on the server side. We can easily
create replicas and tune replication topology. But how are the client machines able to use
the replicated setup?

In typical scenarios, IPA-enrolled Linux machines will use ipa-client-install to
configure various components of the operating system. That configuration can explicitly
name a particular IPA server, or it can rely on DNS SRV records to be used to discover
the correct service endpoint to use. In case of SSSD, the ipa_server can force the SRV
lookup with _srv_ token, and it can be mixed with hostname as well:

[domain/example.com]
ipa_server = ipa1.example.com, _srv_

will prioritize ipa1.example.com and fallback to any other server is can find via DNS. In
older versions of FreeIPA, this was the primary mechanism available for “pinning” IPA
clients to a particular close (in terms of smallest latency) server.

The problem with this solution is its client-side nature. If additional IPA server is installed
in local datacenter, all clients might suddenly need the new server listed in addition to
the existing ipa1.example.com:

[domain/example.com]
ipa_server = ipa1.example.com, ipa2.example.com, _srv_

The order of those hostnames would likely mean that the first server will be used by vast
majority of clients while the second one will only be utilized when clients cannot reach
the first one — hardly a fair load balancing. Other services and libraries might not even
support mixing SRV DNS mechanism with explicit hostnames, making localized behaviour
setup even harder.

To solve this problem, FreeIPA 4.4 introduces DNS-based locations. They allow grouping
of IPA servers and assigning priorities to them, per individual locations.

The basic expectation is that in every network subset where clients are supposed to
primarily use certain set of IPA servers, there is at least one IPA server (replica) running
embedded DNS server, and that clients in that network subset are configured to use that
DNS server. This part of the configuration is outside of IPA's handling — typically DHCP
in individual network segments will be configured to provide local DNS server IP address
first, and it will either be directly the IPA DNS server, or local DNS server which queries
the IPA DNS server during recursive resolution.

IPA DNS server which is assigned to certain location (for example emea) will autogenerate
location-based CNAME records for certain names: _kerberos._udp.example.com,
_kerberos._tcp.example.com, _ldap._tcp.example.com, ... they all will return
respective name under emea._locations.example.com. Those SRV records will in turn
contain priorities for individual IPA servers based on their membership in given location,
and weights entered by admin.

Let us see a simple emea location configuration:

$ ipa location-show emea
 Location name: emea
 Servers: ipa1.uk.example.com, ipa2.uk.example.com
 Advertised by servers: ipa1.uk.example.com, ipa2.uk.example.com
 Servers details:
 Server name: ipa1.uk.example.com
 Service weight: 10
 Service relative weight: 25.0%
 Enabled server roles: CA server, DNS server, NTP server

 Server name: ipa2.uk.example.com
 Service weight: 30
 Service relative weight: 75.0%
 Enabled server roles: DNS server, NTP server

When client machine resolves SRV record to autodiscover a service, it will be “redirected”
via CNAME answer to the location-specific SRV record with location-specific priorities.

$ dig +short @ipa1.uk.example.com. _kerberos._tcp.example.com SRV
_kerberos._tcp.emea._locations.example.com.
0 10 88 ipa1.uk.example.com.
0 30 88 ipa2.uk.example.com.
50 10 88 ipa1.houston.example.com.
$ dig +short @ipa1.houston.example.com. _kerberos._tcp.example.com SRV
_kerberos._tcp.us._locations.example.com.
50 10 88 ipa1.uk.example.com.
0 10 88 ipa1.houston.example.com.
50 30 88 ipa2.uk.example.com.

We see that depending on which IPA DNS server we query, we get priorities 0 for servers
in the same location and 50 for servers outside of it.

This way, SSSD only needs to use ipa_server = _srv_ and other components on the
IPA client machines do not need to configure explicit hostnames of servers and services
of IPA domain. Any modification to the priorities takes place on the server side, and is
of course replicated to all IPA servers. This approach also caters nicely to the needs of
roaming users within the organization. Depending on where they connect their laptop to
the network, they will obtain local DNS server IP address, and will thus resolve the SRV
records via the closest location.

5. Conclusion

With features focused on replicated setups and their management, latest FreeIPA releases
make large-scale identity management deployments easier and more efficient. There are
no longer any excuses for not having well set up FreeIPA redundancy.

References

FreeIPA project. https://www.freeipa.org/

Replica promotion. https://www.freeipa.org/page/V4/Replica_Promotion

Managing replication topology. https://www.freeipa.org/page/V4/
Manage_replication_topology

DNS locations. https://www.freeipa.org/page/V4/DNS_Location_Mechanism

https://www.freeipa.org/
https://www.freeipa.org/page/V4/Replica_Promotion
https://www.freeipa.org/page/V4/Manage_replication_topology
https://www.freeipa.org/page/V4/Manage_replication_topology
https://www.freeipa.org/page/V4/DNS_Location_Mechanism

