Nontrivial application in container

FreelPA experience

Jan Pazdziora
Senior Principal Software Engineer
ldentity Management Engineering, Red Hat
jpazdziora@redhat.com

13" May 2015

@O0

Container quickstart

Dockerfile:

FROM fedora

RUN yum -y install httpd && yum clean all

RUN echo "Test Server" > /var/www/html/index.html
CMD ["/usr/sbin/httpd", "-DFOREGROUND"]

Build image:

host$ docker build -t httpd .
Sending build context to Docker daemon
Step 0 : FROM fedora

[...]
Successfully built 4b46d7c43d40

Run new container based on the image and talk to it:

host$ docker run --name httpd-c httpd &

host$ docker inspect -f '{{ .NetworkSettings.IPAddress }}' httpd-c
172.17.0.3

host$ curl http://172.17.0.3/

Test Server

Technologies involved

Namespaces
Mount (filesystems hierarchy)
Network (devices, |IP addresses, routing)
Process IDs
User and group IDs (currently not used by Docker)
UTS (hostname, domainname)
IPC (SysV IPC, message queues)
Control groups (cgroups) — setting limits
SELinux (use --selinux-enabled with Docker daemon)

iptables (use --1cc=false with Docker daemon)

Namespacing examples

PID namespace:
host$ docker exec httpd-c ps ax

PID TTY STAT TIME COMMAND
17 Ss 0:00 /usr/sbin/httpd -DFOREGROUND
12 7 S 0:00 /usr/sbin/httpd -DFOREGROUND
13 7 S 0:00 /usr/sbin/httpd -DFOREGROUND
14 72 S 0:00 /usr/sbin/httpd -DFOREGROUND
15 ? S 0:00 /usr/sbin/httpd -DFOREGROUND
50 7?7 Rs 0:00 ps ax

Network namespace:

host$ docker run fedora tail -n +2 /proc/net/route
ethoO 00000000 012A11AC 0003 O O 0 000000000 0
ethoO 000011AC 00000000 0001 O O 0 OOOOFFFFO 0

View namespace transitions on the host:

host# pstree -S | grep docker
| -docker(mnt) -+-httpd(ipc,mnt,net,pid,uts)---4*[httpd]
| *-12*[{docker}]

oMo

Filesystems and volumes

The image is mounted as root:

host$ docker exec httpd-c mount | head -1
/dev/mapper/docker-252:17-8193-600d0ac578e0b955¢c25632be5398921c2eeleldb
288b7c687335488199cb4c28 on / type ext4 (rw,relatime,context="system u:
object r:svirt sandbox file t:s0@:c264,c680",discard,stripe=16,data=orde
red)

Bind-mounting volume:

host$ mkdir /tmp/data

host$ echo "Test serving data from volume" > /tmp/data/index.html

host$ docker run --name httpd-c -v /tmp/data:/var/www/html:Z httpd &

host$ docker inspect --format '{{ .HostConfig.Binds }}' httpd-c
[/tmp/data:/var/www/html:Z]

host$ ls -aZ /tmp/data | cut -d ' ' -f 1,4,5

drwxr-xr-x. system u:object r:svirt sandbox file t:s0:c206,c497 .
drwxrwxrwt. system u:object r:tmp t:s0

-rw-r--r--. system u:object r:svirt sandbox flle t:50:¢c206,c497 index.html

host$ curl http://172.17.0.8/
Test serving data from volume

Approach to containerization

Typical advice when moving application to a container:
One daemon/service per component.

Containers can run with their own network and UTS namespaces —
they can act as separate machines.

Use docker run --1link to connect them together.

Bind-mount volumes with configuration/data into directories where
programs expect them.

Install and configure in build time.

In run time, just start the daemon.

Typical setup

Container: . Container: . Container:
) « link) « link)
one service one service one service
TN 2
bind mounts bind mount
volume volume volume

host

Nontrivial application

Running one daemon like httpd above is easy.

Especially when it does not require any runtime-specific
configuration.

And it does not store state and can be stopped at any moment.
How about application which consists of a dozen of daemons?
Application which needs to do heavy initialization upon the first run.
Individual components use their own paths for configuration and data.
Their startup needs to be synchronized.

There is common configuration tool which assumes everything is on
single machine.

FreelPA is such an application — umbrella on top of multiple services.

Containerizing nontrivial application

If components do not know how to communicate across network,
separating them into individual containers might not be feasible.

Perhaps Unix sockets are used.
Or the installer simply assumes everything is on localhost.
Security, authentication.
Locations of files that the programs work with might be hardcoded.
For OS-level tools, they are often standardized.
For some, not really documented.
Bind-mounting dozens of directories increases chance of mismatch.
Components might only be able to finalize their setup in runtime.

Startup and shutdown procedures were polished to perfection by
maintainers for individual distributions over the years.

In case of FreelPA ...

Configuration tools like ipa-server-install or ipa-replica-install
are major part of the whole benefit of the project.

We want to use them, not duplicate their logic.
They assume all parts are local.

Only when domain and realm are known once container is run, LDAP,
Kerberos, DNS, or CA can be properly set up.

Large number of various directories and files, all over the filesystem.

FreelPA uses native init system and systemd unit files for service start/
stop.

The data and configuration

To minimize number of volumes that will need to be bind-mounted, all
data directories and files live under /data.

In build time, install software with yum install freeipa-server.

Then move directories and files that will hold instance config and
data (and thus define it) to /data-template.

And create symlinks from original locations to paths under /data.
Container is run with docker run -v /opt/ipa-data:/data ...

Upon the first run when empty /data is detected, copy over the
vanilla content from /data-template to /data, populating the
volume.

Used docker diff during the work to verify that no unexpected
changes get written to the image.

Eventually, we might want to put at least logs to separate volume.

FreelPA setup

Single container

389 | kDe | PNo gy e | PR FETTES Secep
server CA Server
Single image with symlinks to —» /data
bind
T
mount
volume

host

Using the native configuration tool

The process run as PID 1 is a bash script which detects initial (setup)
run vs. routine startup.

For initial, ipa-server-install is run.
The configuration and data get stored into the volume, via symlinks.

We had to cheat a bit in some cases — for example keytab files have
to be created in image and copied over afterwords.

The setup tool uses systemctl heavily but there is no systemd

running — systemctl replacement scripted to start services directly,
while observing systemd unit files.

Only supporting syntaxes used by our services.

We might want to use native systemd once it runs in Docker
containers seamlessly.

For subsequent startup, it just starts the enabled services.

Initial instance configuration

PID TTY STAT TIME COMMAND

17 Ss 0:00 /bin/bash /usr/sbin/ipa-server-configure-first
43 7 S 0:00 xargs /usr/sbin/ipa-server-install -U
44 7 S 0:01 _/usr/bin/python2 -E /usr/sbin/ipa-server-install -
74 7 S 0:00 \ /usr/bin/perl /usr/sbin/setup-ds.pl --silent -
89 ? S 0:00 _ sh -c /var/lib/dirsrv/scripts-EXAMPLE-COM/
90 ? S 0:00 _ /bin/sh /var/lib/dirsrv/scripts-EXAMPL
91 ? S 0:00 \ /bin/sh ./1dif2db -n userRoot -i /
119 ? Sl 0:00 \ /usr/sbin/ns-slapd ldif2db -D
66 7 Ss 0:00 /usr/sbin/ntpd -u ntp:ntp -g -Xx

PID

1470
1479
2010
2020
2043
2225
2274
2502
2503
2504
2635
2645
2646
2647
2648
2649
2650
2651
2652
2653

SO IEEC RS BEES BETS REES RS BESS BEES IEEUIERS BRSO REES BECS BEES RSN BRSO BEES RSO REES N I

—]
=<

FreelPA container running

TIME
: 00
: 00
: 00
: 00
: 00
: 00
:01
: 00
: 00
: 00
11
: 00
: 00
: 00
: 00
101
:01
: 00
: 00
: 00
: 00

coNoNoNoNoNoNoNoNoNoNoNoNoNoNoNONONONONONO)

COMMAND
/bin/bash /usr/sbin/ipa-server-configure-first
/bin/dbus-daemon --system --fork
/usr/sbin/certmonger -S -p /var/run/certmonger.pid -n
/usr/sbin/kadmind -P /var/run/kadmind.pid
/usr/bin/memcached -d -s /var/run/ipa memcached/ipa me
/usr/bin/perl /bin/systemctl-socket-daemon /var/run/kr
/usr/sbin/ns-slapd -D /etc/dirsrv/slapd-EXAMPLE-COM -i
/usr/sbin/krb5kdc -P /var/run/krb5kdc.pid
sh -c export TOMCAT CFG LOADED="1"; export TOMCATS BAS
\ /usr/sbin/runuser -g pkiuser -u pkiuser -- /usr/li
\ /usr/lib/jvm/jre/bin/java -DRESTEASY LIB=/usr/
/usr/sbin/named-pkcsll -u named
sh -c export LANG=C; /usr/sbin/httpd $0PTIONS -DFOREGR
_/usr/sbin/httpd -DFOREGROUND
\ /usr/libexec/nss pcache 458756 off /etc/httpd/
_ /usr/sbin/httpd -DFOREGROUND
_/usr/sbin/httpd -DFOREGROUND
_ /usr/sbin/httpd -DFOREGROUND
\ /usr/sbin/httpd -DFOREGROUND
_ /usr/sbin/httpd -DFOREGROUND
_/usr/sbin/httpd -DFOREGROUND

2654
2685
2733
2738
2740
2741
2742
2743

SO IEES BESC REES BESS IEES BRI

FreelPA container running (cont'd)

nNnunmumomom N nom

0))]

oNoNoNoNONONONO)

: 00
: 00
: 00
: 00
: 00
: 00
: 00
: 00

_/usr/sbin/httpd -DFOREGROUND

_ /usr/sbin/httpd -DFOREGROUND
/usr/sbin/sssd -D -f
_ /usr/libexec/sssd/sssd be --domain example.com --u
\ /usr/libexec/sssd/sssd nss --uid 0 --gid 0 --debug
_ /usr/libexec/sssd/sssd sudo --uid 0 --gid 0 --debu
\ /usr/libexec/sssd/sssd pam --uid 0 --gid 0 --debug
\ /usr/libexec/sssd/sssd pac --uid 0 --gid 0 --debug

Publicly accessible server

FreelPA server provides multiple services on multiple ports
EXPOSE 53/udp 53 80 443 389 636 88 464 88/udp 464/udp 123/udp 7389 9443 94

Even if bridge networking is used, it is possible to use -p options to
docker run to map ports on host's public interface to the container.

But our server is also DNS server and it has record about itself that
clients wil query.

From within container, we have no way to find out host's IP address.

Solution: be explicit, host's prefered IP address will be passed in
explicitly via environment variable.

The resolv.conf and localhost

With FreelPA, DNS server (bind) can be run in the container.

We rewrite nameserver in container's /etc/resolv.conf to point to
127.0.0.1.

What if we wanted to use DNS server on host's localhost?

No good answer — use either bridge address or host's public IP address.

NTP in container

FreelPA can setup and run NTP, Kerberos loves time to be in sync.

By default, processes in container do not have capabilities to set time.
Use --cap-add=SYS TIME to add the capability back.

AVC denial.

Custom SELinux policy needed to allow sys time capability to
svirt lxc net t.

How upgrades work?

Container

Image Volume
(Built using yum install) (Bind-mounted in runtime)

Host

Build new image (with yum install).

Remove the old container and run a new one:

New container

New image Original volume content
(Built using yum install) (Bind-mounted in runtime)

Host

Upgrades

Upgrade (postinstall) scriptlets in roms never kick in.

The script which handles initial population needs to detect and handle
upgrade situation as well.

If standalone upgrade process is available in the project, use it.
Parsing and running the rpm scriptlets also works.
It helps if the existing mechanisms are idempotent.

Generate /etc/build-1id to easily detect different image.

Make sure /data has all the locations that symlinks in the new image
expect to exist.

Conclusion

Running multiple services in one container is possible.
Maximize number of steps done in build time.
If your init works in container use it, otherwise work around it.

Minimize number of volumes that the user has to deal with.

References

https://github.com/adelton/docker-freeipa
https://www.freeipa.org/

https://github.com/adelton/docker-freeipa
https://www.freeipa.org/

