Minimizing workstation installation

Jan Pazdziora
Sr. Principal Software Engineer
OpenShift Security, Red Hat
jpazdziora@redhat.com

DEVC@NF -

27thJanuary 2018

@00

Problem statement

Upgrading my Fedora on my laptop and workstation, | see lots of
packages | do not immediately know what they are for.

When | try dnf remove, | find out they are dependencies of some
seldom-used package.

| run some commands very rarely.

Couple of times per year. But every year.
For example cloning or updating non-git repo.
Or preparing slides for conferences.

| write them in Docbook Slides and | create PDFs via xsltproc + fop.

The goal

Remove rarely used packages from my workstation installation.
To minimize the number of packages.
Not necessarily to save space.

Yet have the commands still available when | need them.
| only care about few commands from those packages.

Focus primarily on command line tools.

The approach

Install packages to separate containers.
Literally, containers.
Build the containers on the fly when needed.

Invoke commands from those containers.

Docker architecture

The dockerd daemon listens on /var/run/docker.sock.
It delegates starting container to docker-containerd daemon.
That forks docker-containerd-shim per container.
Which starts entrypoint process as user specified in USER or - -user.
The dockerd, -containerd, and -shim run as root.
Users run containers using docker run command.
It needs to be able to talk to dockerd via docker.sock.
It pipes stdin, stdout, and stderr to the container process.

Allowing access to docker.sock makes the user root on the host, think
docker run --privileged -v /:/host ...

No built-in authorization mechanism in dockerd.

Running containers as “myself”

We want to run the commands in container as “us”.

For access to our home and current directory.
$ id
uid=1001(user) gid=1001(user) groups=1001(user)
context=unconfined u:unconfined r:unconfined t:s0-s0:c0.c1023

We can force uid/gid:
docker run --user 1001:1001 fedora id
uid=1001 gid=1001 groups=1001

But uid/gid is not enough due to SELinux labeling:

docker run --user 1001:1001 -v /home/user:/home fedora ls -la /home
ls: cannot open directory '/home': Permission denied

Forcing - -security-opt=label=type:unconfined t fails but disabling
labeling leads to reasonable spc t type:

docker run --user 1001:1001 --security-opt=label=disable -v /home/user:/

Running containers when not root

Not having direct access to docker.sock — go sudo.

$ cat /usr/local/bin/build-run-container-sudo
#!/bin/bash
/usr/bin/sudo /usr/local/bin/build-run-container "$(basename $0)" "$@"

$ cat /etc/sudoers.d/build-run-container
ALL ALL=(root) NOPASSWD: /usr/local/bin/build-run-container

We can instruct dockerd to run the process as the invoking user:
docker run --user="$SUDO UID":"$SUDO GID" ...

And from sudo'ed process, we can also docker build the image if it
does not exist.

Build and run container

#!/bin/bash

essentially, docker build && run -- simplified code

set -e

NAME="$1" ; shift

if ' [["$NAME" =~ "[-a-zA-7Z0-9]+% 1] ; then # sanity check
echo "$0: pass correct container source directory name." >&2
exit 2

fi

SOURCE DIR="/usr/local/share/container-sources/$NAME"

if !' [-f "$SOURCE DIR/Dockerfile"] ; then # access check
echo "$0: no $NAME container source." >&2
exit 3

fi

docker build -t "$NAME" "$SOURCE DIR" > /dev/null

RUN OPTS=$(docker inspect --format '{{ .Config.Labels.RUN OPTS }}' "$NAME")

if ["$RUN OPTS" == "<no value>"] ; then RUN OPTS='"' ; fi

docker run --rm --read-only --user="$SUDO UID":"$SUDO GID" \
--security-opt=label=type:spc t -v $(pwd):/data $RUN OPTS "$NAME" "$@"

Useful docker run parameters

Hardcoded defaults:

--rm

--read-only

--user="$SUDO UID":"$SUDO GID"

--security-opt=label=type:spc t or =label=disable
Specify these using RUN OPTS label in Dockerfile:

--tmpfs /tmp

-ti

- -net=host

Containerized commmand

Controlled by adding sources to a particular subdirectory:

/usr/local/share/container-sources/svn/Dockerfile
FROM registry.fedoraproject.org/fedora:latest

RUN dnf install -y subversion && dnf clean all
WORKDIR /data

ENTRYPOINT ["/usr/bin/svn"]

For convenience, make a symlink in $PATH
ln -s build-run-container-sudo /usr/local/bin/svn

With the sudoers configuration, the program is made available to all
users.

$ svn checkout http://svn.apache.org/repos/asf/httpd/httpd/trunk \
httpd-trunk

Customize what you need in the setup

FROM registry.fedoraproject.org/fedora: latest

RUN dnf install -y libxslt docbook-slides && dnf clean all
WORKDIR /data

ENTRYPOINT ["/usr/bin/xsltproc"]

FROM registry.fedoraproject.org/fedora:latest

RUN dnf install -y fop \
/usr/share/fonts/dejavu/DejaVuSans-Bold.ttf \
/usr/share/fonts/dejavu/DejaVuSansMono.ttf && dnf clean all

WORKDIR /data

ENTRYPOINT ["/usr/bin/fop"]

LABEL RUN OPTS "--tmpfs /tmp"

Further considerations

We might need access to some .dot file in invoking user's home.

RUN mkdir /the-home
RUN touch /the-home/.ldaprc
LABEL RUN OPTS "-v ~/.ldaprc:/the-home/.ldaprc"

storing RUN OPTS in a array for easy expansion of ~/'s to $HOME
RUN OPTS=($(docker inspect --format '{{ .Config.Labels.RUN OPTS }}' $NAM
docker run [...] ${RUN OPTS[@]/#~\//"$HOME/"} "$NAME" "$@"

Some files in the image might need to be owned by the invoking user.

ARG UID
RUN chown $UID /some/path/in/image

IMAGE="$NAME - $SUDO UID-$SUDO GID"
docker build -t "$IMAGE" \

--build-arg=UID="$SUDO UID" --build-arg=GID="$SUDO GID" "$SOURCE DIR"
docker run [...] "$IMAGE" "$@"

Further considerations

Figure the working directory (to mount $PWD to) from the image.
X applications

-v /tmp/.X11-unix/:/tmp/.X11l-unix/

-v ~/.Xauthority:/the-home/.Xauthority

- -net=host

Closing remarks

github.com/adelton/build-run-container
I've created couple of pull requests there — comments welcome.
Especially comments about security of the setup.
Dockerfile examples welcome.
Even if, the the goal is not to make repo of those.

My xsltproc needs are different than yours.

https://github.com/adelton/build-run-container

