
IPAaaS: turning complex
application to “a service”

Jan Pazdziora
Sr. Principal Software Engineer

Identity Management Special Projects, Red Hat
jpazdziora@redhat.com

28th January 2017

Problem space

Problem space Jan Pazdziora 2 / 26

■ Have favourite application setup / solution
■ Currently maybe on physical host or some VM
■ Multiple services / daemons
■ Additional logic in the setup

■ What if we want the solution
■ To be more lightweight
■ Easily deployable elsewhere
■ Potentially offered as a service, with instances started on demand

Application and its setup

Problem space Jan Pazdziora 3 / 26

■ Multiple services / daemons
■ E.g. CMS, wiki, time-tracking system, ...
■ Maybe with some database server

■ Some cron jobs for sync and backup and monitoring
■ And email setup for sending warnings out

■ With sshd
■ Used to yum upgrade the software or tweak the configuration

■ Perhaps with some configuration management setup / agent

The goal

The goal Jan Pazdziora 4 / 26

■ Containerize the application setup
■ Without necessarily breaking it into multiple containers
■ Yes, it is an antipattern

■ But one matching real needs
■ Organizations do not want to unnecessarily spend resources to

break their setups to multiple containers, only to stitch them back
together

■ Make it easy to deploy in some PaaS
■ For example OpenShift

Containerizing complex application

Containerizing complex setup Jan Pazdziora 5 / 26

■ Install software in build time
■ Set whatever can be pre-set in build time
■ Identify and isolate configuration and data

■ This can be iterative process
■ Configuration and data need to end up in persisted volumes

■ In run time, do initial “firstboot” configuration
■ Based on small set of configuration parameters
■ Remember, there will be multiple services to set up

■ In run time, start and run the services, in proper order

Multiple services in container: execution

Containerizing complex setup Jan Pazdziora 6 / 26

■ Just like outside of container: init/systemd and targets and services
host$ docker run -ti -e container=docker fedora:24 /usr/sbin/init
systemd 229 running in system mode. (+PAM +AUDIT +SELINUX +IMA -APPARMOR +SMACK +SYSVINIT +UTMP +LIBCRYPTSETUP +GCRYPT +GNUTLS +ACL +XZ +LZ4 +SECCOMP +BLKID +ELFUTILS +KMOD +IDN)
Detected virtualization docker.
Detected architecture x86-64.
Welcome to Fedora 24 (Twenty Four)!
Set hostname to <06cd3aff5b2e>.
[OK] Reached target Local File Systems.
[...]
[OK] Started Update UTMP about System Runlevel Changes.

■ The container=docker environment variable needed for status output
■ Except for fedora:25+ where it does not work (bug 1373780)

■ The infamous -v /sys/fs/cgroup:/sys/fs/cgroup:ro and --tmpfs
for /run and /tmp are no longer needed when oci-systemd-hook is
installed on the host and executed command looks like init

https://bugzilla.redhat.com/show_bug.cgi?id=1373780

Execution with systemd in container

Containerizing complex setup Jan Pazdziora 7 / 26

■ The “firstboot” set can be run before exec-ing systemd
■ Or it can be a systemd service, especially when the initialization

expects systemd to be running
app-configure.service:
[Unit]
Before=app1.service app2.service
and
COPY app-configure.service /usr/lib/systemd/system/
RUN systemctl enable app-configure

■ Minimize the targets
■ RUN systemctl mask dnf-makecache.timer

■ Or to workaround bug 1309574:
RUN systemctl mask systemd-sysusers.service

https://bugzilla.redhat.com/show_bug.cgi?id=1309574

Things to consider

Containerizing complex setup Jan Pazdziora 8 / 26

■ Passing parameters to services
■ For example via files in /run

■ Output from services to container output
■ For debugging and progress tracking
■ /proc/1/fd/1 no longer works (bug 1413099)

https://bugzilla.redhat.com/show_bug.cgi?id=1413099

Systemd-based setup in container

Containerizing complex setup Jan Pazdziora 9 / 26

■ Dockerfile:
FROM fedora
RUN yum install -y httpd mod_ssl ... && yum clean all
ENV container docker
RUN systemctl enable httpd ...
Tweak configuration to turn distribution defaults
to your application's defaults
EXPOSE 80 443
ENTRYPOINT ["/usr/sbin/init"]

■ Build and run the container
■ The services use and populate various files, those are the application

setup's config and data

Identify configuration and data

Containerizing complex setup Jan Pazdziora 10 / 26

■ Software installed
■ /usr, default content of /var and /etc

■ Services enabled
■ /etc/systemd/system/multi-user.target.wants

■ Configuration of individual services
■ /etc

■ Data of individual services
■ /var, /etc, ... and sometimes other locations

■ Querying rpm database only helps so much; docker diff helps a lot

docker diff systemd-httpd

Containerizing complex setup Jan Pazdziora 11 / 26

D /var/lib/rpm/__db.002
[...]
C /var/lib/systemd/catalog/database
[...]
A /var/log/journal/7fb94583cd37a375e6c10909033c247b
A /var/log/journal/7fb94583cd37a375e6c10909033c247b/system.journal
[...]
A /var/log/httpd/error_log
A /var/log/httpd/ssl_access_log
[...]
C /var/cache/ldconfig/aux-cache
[...]
A /var/tmp/systemd-private-50192283a3134194bd3381d9416080f4-httpd.service-s4TWT0
[...]
C /etc/group
C /etc/machine-id
C /etc/passwd
C /etc/mtab
[...]
C /etc/ld.so.cache
A /etc/.updated

Storage of complex setup

Containerizing complex setup Jan Pazdziora 12 / 26

■ Instance's state is what needs to be persisted
■ All over the /var and /etc (but not the whole /var and /etc)

■ We need single volume for the application setup
■ Avoid mixups when only parts of the config or data would get

mounted
■ Upgrades when new locations need to be included

■ Suggested approach: symlinked layout
■ In build time

■ /data-template with the initial content
■ symlinks from the image to /data

■ In run time populate / update /data from /data-template

Build time preparation

Containerizing complex setup Jan Pazdziora 13 / 26

■ volume-data-list:
/etc/httpd/conf
/etc/httpd/conf.d
/etc/httpd/conf.modules.d
/etc/systemd/system
/var/log/httpd
[...]

COPY volume-data-list /etc/

■ Moving initial config and data aside:
RUN mkdir /data-template /data
RUN while read i ; do \
 mkdir -p /data-template$(dirname $i) ; \
 mv $i /data-template$i ; \
 ln -sv /data$i $i ; done < /etc/volume-data-list
VOLUME ["/data"]

Runtime initialization

Containerizing complex setup Jan Pazdziora 14 / 26

■ init:
#!/bin/bash
(cd /data-template && cp -npr --parents -t /data *)
exec /usr/sbin/init

COPY init /usr/local/sbin/init
RUN chmod +x /usr/local/sbin/init
ENTRYPOINT ["/usr/local/sbin/init"]

Storage preparation: initial

Containerizing complex setup Jan Pazdziora 15 / 26

[...]
/etc/hosts.allow
/etc/hosts.deny
/etc/httpd/conf
/etc/httpd/conf.d
/etc/httpd/conf.modules.d
/etc/httpd/logs -> ../../var/log/httpd
/etc/httpd/modules -> ../../usr/lib64/httpd/modules
/etc/httpd/run -> /run/httpd
/etc/init.d -> rc.d/init.d
/etc/inittab
[...]
/etc/system-release -> fedora-release
/etc/systemd/resolved.conf
/etc/systemd/system
/etc/systemd/system.conf
[...]
/var/log/hawkey.log
/var/log/httpd
/var/log/journal

Storage preparation: move to template

Containerizing complex setup Jan Pazdziora 16 / 26

[...] /data-template:
/etc/hosts.allow
/etc/hosts.deny
 /etc/httpd/conf
 /etc/httpd/conf.d
 /etc/httpd/conf.modules.d
/etc/httpd/logs -> ...
/etc/httpd/modules -> ...
/etc/httpd/run -> /run/httpd
/etc/init.d -> rc.d/init.d
/etc/inittab
[...]
/etc/system-release -> fedora-release
/etc/systemd/resolved.conf
 /etc/systemd/system
/etc/systemd/system.conf
[...]
/var/log/hawkey.log
 /var/log/httpd
/var/log/journal

Storage preparation: point to volume

Containerizing complex setup Jan Pazdziora 17 / 26

[...] /data-template has content
/etc/hosts.allow
/etc/hosts.deny
/etc/httpd/conf -> /data/etc/httpd/conf
/etc/httpd/conf.d -> /data/etc/httpd/conf.d
/etc/httpd/conf.modules.d -> /data/etc/httpd/conf.modules.d
/etc/httpd/logs -> ...
/etc/httpd/modules -> ...
/etc/httpd/run -> /run/httpd
/etc/init.d -> rc.d/init.d
/etc/inittab
[...]
/etc/system-release -> fedora-release
/etc/systemd/resolved.conf
/etc/systemd/system -> /data/etc/systemd/system
/etc/systemd/system.conf
[...]
/var/log/hawkey.log
/var/log/httpd -> /data/var/log/httpd
/var/log/journal

What is special about services

From containers to “a service” Jan Pazdziora 18 / 26

■ Single setup interaction, during initialization

■ Careful consideration needed about supported parameters and
deployment options

■ Status needs to live in volume(s)

■ Typical container is easy to tweak (docker exec post setup)

■ Plain container can be the bearer of application's identity

■ In PaaS, containers get removed and recreated

■ Hardened environments

■ It might not be allowed to run systemd as root in PaaS

■ UID-namespaces could help

■ But see bugs 1401537, 1401944, 1402264; and 1406684

https://bugzilla.redhat.com/show_bug.cgi?id=1401537
https://bugzilla.redhat.com/show_bug.cgi?id=1401944
https://bugzilla.redhat.com/show_bug.cgi?id=1402264
https://bugzilla.redhat.com/show_bug.cgi?id=1406684

What is special about services (cont'd)

From containers to “a service” Jan Pazdziora 19 / 26

■ Hostname handling might be limited
■ It helps if the application can work with identity != $(uname -n)

■ Exposure of non-HTTP(S) traffic
■ The PaaS environment might primarily target Web applications

■ Application-level replication
■ The PaaS environment might scale containers ... but what if they are

stateful?

A complex application: FreeIPA server

FreeIPA in container Jan Pazdziora 20 / 26

■ 389 Directory Server, KDC, CA, HTTP server, DNS server, OTP server, ...
■ Many services on many ports
■ It can serve as ultimate source of identities, including host identities

■ It can run its own DNS server instance
■ Built-in replication

■ Start with one master, set up replicas from it

■ github.com/freeipa/freeipa-container
■ Containerized (single-container) setup available upstream for a while

■ Available as technology preview with RHEL Atomic 7.3.1

https://github.com/freeipa/freeipa-container

FreeIPA server as a service

FreeIPA as a service Jan Pazdziora 21 / 26

FreeIPA in OpenShift

FreeIPA as a service Jan Pazdziora 22 / 26

■ github.com/freeipa/freeipa-container/blob/master/*.json
■ UID-namespacing not yet in OpenShift, coming in 1.6 later this year.

oc login -u system:admin
[...]
Using project "devconf-2017".
oc create serviceaccount useroot
serviceaccount "useroot" created
oc adm policy add-scc-to-user anyuid -z useroot

■ Create PersistentVolume — hostPath PV example in freeipa-
server-openshift-volume.json

■ New application — via WebUI if the JSON template was imported, or
oc new-app --name freeipa-x -f ./freeipa-server-openshift.json \
 -p IPA_SERVER_SERVICE=freeipa-1 -p IPA_ADMIN_PASSWORD=Secret123 \
 -p IPA_SERVER_HOSTNAME=freeipa.example.test \
 -p IPA_SERVER_IP=172.30.248.14 \
 -p IPA_SERVER_IMAGE=freeipa-server:centos-7

https://github.com/freeipa/freeipa-container/blob/master/freeipa-server-openshift.json
https://github.com/freeipa/freeipa-container/blob/master/freeipa-server-openshift-volume.json
https://github.com/freeipa/freeipa-container/blob/master/freeipa-server-openshift-volume.json

Notes about FreeIPA in OpenShift

FreeIPA as a service Jan Pazdziora 23 / 26

■ Single volume
 "volumes": [
 {
 "name": "${IPA_SERVER_SERVICE}-data",
 "persistentVolumeClaim": {
 "claimName": "${IPA_SERVER_SERVICE}"
 }
 },

 "volumeMounts": [
 {
 "name": "${IPA_SERVER_SERVICE}-data",
 "mountPath": "/data"
 },

■ Not available in Online yet due to the need of anyuid for systemd
■ clusterIP for Service, to expose the non-Web traffic
■ Master only for now — neither PetSet nor StatefulSet seem to start

the second pod

Complex applications as service

FreeIPA as a service Jan Pazdziora 24 / 26

■ Ultimately, the container should run with read-only filesystem
■ Some software is not happy with symlinks

■ SELinux separation is lost — the same type for all processes in the
container

■ Use of environment variable as initial setup parameters
■ Native hostname is not what the application wants to use

Conclusion

Conclusion Jan Pazdziora 25 / 26

■ Server side works
■ Need to flesh out replication
■ Can be used as an example for other complex setups that are not

practical to be broken into smaller containers
■ Client side — SSSD containers exist ...

■ Consuming them in other services might be tricky

References

Conclusion Jan Pazdziora 26 / 26

■ github.com/freeipa/freeipa-container
■ *.json files

■ hub.docker.com/r/freeipa/freeipa-server/
■ adelton.com/docs/containers/complex-application-in-container

https://github.com/freeipa/freeipa-container
https://hub.docker.com/r/freeipa/freeipa-server/
https://www.adelton.com/docs/containers/complex-application-in-container

