IPAaaS: turning complex
application to “a service”

Jan Pazdziora
Sr. Principal Software Engineer
ldentity Management Special Projects, Red Hat
jpazdziora@redhat.com

DEVC@NF -

28" January 2017

@00

Problem space

Have favourite application setup / solution
Currently maybe on physical host or some VM
Multiple services / daemons
Additional logic in the setup

What if we want the solution
To be more lightweight
Easily deployable elsewhere

Potentially offered as a service, with instances started on demand

Application and its setup

Multiple services / daemons
E.g. CMS, wiki, time-tracking system, ...
Maybe with some database server
Some cron jobs for sync and backup and monitoring
And email setup for sending warnings out
With sshd
Used to yum upgrade the software or tweak the configuration

Perhaps with some configuration management setup / agent

The goal

Containerize the application setup
Without necessarily breaking it into multiple containers
Yes, it is an antipattern
But one matching real needs

Organizations do not want to unnecessarily spend resources to
break their setups to multiple containers, only to stitch them back
together

Make it easy to deploy in some PaaS

For example OpenShift

Containerizing complex application

Install software in build time
Set whatever can be pre-set in build time
Identify and isolate configuration and data
This can be iterative process
Configuration and data need to end up in persisted volumes
In run time, do initial “firstboot” configuration
Based on small set of configuration parameters
Remember, there will be multiple services to set up

In run time, start and run the services, in proper order

Multiple services in container: execution

Just like outside of container: init/systemd and targets and services

host$ docker run -ti -e contailner=docker fedora:24 /usr/sbin/init

systemd 229 running in system mode. (+PAM +AUDIT +SELINUX +IMA -APPARMOR +:
Detected virtualization docker.

Detected architecture x86-64.

Welcome to Fedora 24 (Twenty Four)'!

Set hostname to <06cd3aff5b2e>.

[OK] Reached target Local File Systems.

[...]
[OK] Started Update UTMP about System Runlevel Changes.

The container=docker environment variable needed for status output
Except for fedora: 25+ where it does not work (bug 1373780)

The infamous -v /sys/fs/cgroup:/sys/fs/cgroup:ro and --tmpfs
for /run and /tmp are no longer needed when oci-systemd-hook is
installed on the host and executed command looks like init

https://bugzilla.redhat.com/show_bug.cgi?id=1373780

Execution with systemd in container

The “firstboot” set can be run before exec-ing systemd
Or it can be a systemd service, especially when the initialization
expects systemd to be running

app-configure.service:

[Unit]
Before=appl.service app2.service

and

COPY app-configure.service /usr/lib/systemd/system/
RUN systemctl enable app-configure

Minimize the targets
RUN systemctl mask dnf-makecache.timer

Or to workaround bug 1309574:
RUN systemctl mask systemd-sysusers.service

https://bugzilla.redhat.com/show_bug.cgi?id=1309574

Things to consider

Passing parameters to services
For example via files in /run

Output from services to container output
For debugging and progress tracking
/proc/1/fd/1 no longer works (bug 1413099)

https://bugzilla.redhat.com/show_bug.cgi?id=1413099

Systemd-based setup in container

Dockerfile:

FROM fedora

RUN yum install -y httpd mod ssl ... & yum clean all
ENV container docker

RUN systemctl enable httpd ...

Tweak configuration to turn distribution defaults
to your application's defaults

EXPOSE 80 443

ENTRYPOINT ["/usr/sbin/init"]

Build and run the container

The services use and populate various files, those are the application
setup's config and data

Identify configuration and data

Software installed
/usr, default content of /var and /etc
Services enabled
/etc/systemd/system/multi-user.target.wants
Configuration of individual services
/etc
Data of individual services

/var, /etc, ... and sometimes other locations

Querying rpm database only helps so much; docker diff helps a lot

docker diff systemd-httpd

/var/lib/rpm/ db.002

o]

/var/lib/systemd/catalog/database

o]
/var/log/journal/7fb94583cd37a375e6c10909033¢c247b
/var/log/journal/7fb94583cd37a375e6c10909033c247b/system. journal
o]

/var/log/httpd/error log
/var/log/httpd/ssl access log

o]

/var/cache/ldconfig/aux-cache

o]
/var/tmp/systemd-private-50192283a3134194bd3381d9416080f4-httpd.service-s4TWTO
o]

/etc/group

/etc/machine-id

/etc/passwd

/etc/mtab

o]

/etc/1ld.so.cache

/etc/.updated

Storage of complex setup

Instance's state is what needs to be persisted
All over the /var and /etc (but not the whole /var and /etc)
We need single volume for the application setup

Avoid mixups when only parts of the config or data would get
mounted

Upgrades when new locations need to be included
Suggested approach: symlinked layout
In build time
/data-template with the initial content
symlinks from the image to /data

In run time populate / update /data from /data-template

Build time preparation

volume-data-list:

/etc/httpd/conf
/etc/httpd/conf.d
/etc/httpd/conf.modules.d
/etc/systemd/system
/var/log/httpd

[...]

COPY volume-data-list /etc/

Moving initial config and data aside:

RUN mkdir /data-template /data
RUN while read 1 ; do \

mkdir -p /data-template$(dirname $i) ; \

mv $i /data-template$i ; \

ln -sv /data%$i $1i ; done < /etc/volume-data-list
VOLUME ["/data"]

Runtime initialization

init:
#!/bin/bash

(cd /data-template && cp -npr --parents -t /data *)
exec /usr/sbin/init

COPY init /usr/local/sbin/init
RUN chmod +x /usr/local/sbin/init
ENTRYPOINT ["/usr/local/sbin/init"]

Storage preparation: initial

[...]

/etc/hosts.allow

/etc/hosts.deny

/etc/httpd/conf

/etc/httpd/conf.d
/etc/httpd/conf.modules.d
/etc/httpd/logs -> ../../var/log/httpd
/etc/httpd/modules -> ../../usr/lib64/httpd/modules
/etc/httpd/run -> /run/httpd
/etc/init.d -> rc.d/init.d
/etc/inittab

[...]

/etc/system-release -> fedora-release
/etc/systemd/resolved. conf
/etc/systemd/system
/etc/systemd/system.conf

[...]

/var/log/hawkey. log

/var/log/httpd

/var/log/journal

Storage preparation: move to template

[...] /data-template:
/etc/hosts.allow
/etc/hosts.deny
/etc/httpd/conf
/etc/httpd/conf.d
/etc/httpd/conf.modules.d
/etc/httpd/logs -> ...
/etc/httpd/modules -> ...
/etc/httpd/run -> /run/httpd
/etc/init.d -> rc.d/init.d
/etc/inittab
[...]
/etc/system-release -> fedora-release
/etc/systemd/resolved. conf
/etc/systemd/system
/etc/systemd/system.conf
[...]
/var/log/hawkey. log
/var/log/httpd
/var/log/journal

Storage preparation: point to volume

[...] /data-template has content
/etc/hosts.allow

/etc/hosts.deny

/etc/httpd/conf -> /data/etc/httpd/conf

/etc/httpd/conf.d -> /data/etc/httpd/conf.d
/etc/httpd/conf.modules.d -> /data/etc/httpd/conf.modules.d
/etc/httpd/logs -> ...

/etc/httpd/modules -> ...

/etc/httpd/run -> /run/httpd

/etc/init.d -> rc.d/init.d

/etc/inittab

[...]

/etc/system-release -> fedora-release
/etc/systemd/resolved. conf

/etc/systemd/system -> /data/etc/systemd/system
/etc/systemd/system.conf

[...]

/var/log/hawkey. log

/var/log/httpd -> /data/var/log/httpd

/var/log/journal

What is special about services

Single setup interaction, during initialization

Careful consideration needed about supported parameters and
deployment options

Status needs to live in volume(s)
Typical container is easy to tweak (docker exec post setup)
Plain container can be the bearer of application's identity
In PaaS, containers get removed and recreated
Hardened environments
It might not be allowed to run systemd as root in Paa$S
UID-namespaces could help

But see bugs 1401537, 1401944, 1402264; and 1406684

https://bugzilla.redhat.com/show_bug.cgi?id=1401537
https://bugzilla.redhat.com/show_bug.cgi?id=1401944
https://bugzilla.redhat.com/show_bug.cgi?id=1402264
https://bugzilla.redhat.com/show_bug.cgi?id=1406684

What is special about services (cont'd)

Hostname handling might be limited

It helps if the application can work with identity !'= $(uname -n)
Exposure of non-HTTP(S) traffic

The Paa$S environment might primarily target Web applications
Application-level replication

The PaaS environment might scale containers ... but what if they are
stateful?

A complex application: FreelPA server

389 Directory Server, KDC, CA, HTTP server, DNS server, OTP server, ...

Many services on many ports

It can serve as ultimate source of identities, including host identities
It can run its own DNS server instance

Built-in replication

Start with one master, set up replicas from it

github.com/freeipa/freeipa-container
Containerized (single-container) setup available upstream for a while

Available as technology preview with RHEL Atomic 7.3.1

https://github.com/freeipa/freeipa-container

FreelPA server as a service

OPENSHIFT ORIGIN

@ Created FreelPA Server in project devconf-2017.

devconf-2017 » Add to Project Catalog FreelPA Server

v FREEIPA SERVER
FreelPA Server

FreelPA Server

Namespace: devconf-2017

Images

pod

& freeipa-server:fedora-25

Parameters
*Service and deployment config name

freeipa-server

. Pods freeipa-server-1-55fz8
*Image to use for the service

freeipa-server:fedora-25 freeipa-server-1-55fz8 Actions v
deployment deploymentconfig

*FreelPA server hostname .
8 Details Environment Logs Terminal Events
ipa.example.test =

. Contai Hi - Ri i S & | E dz
FreelPA server service IP address ontainer:freeipa-server — Q Running ave xpan

Sat Jan 28 08:04:05 UTC 2017 /usr/sbin/ipa-server-configure-first
*Options to ipa-server-install command The log file for this installation can be found in /var/log/ipaserver-install.log

-U -r EXAMPLE.TEST "SEtUp'dnS --no-forwarders --no-ntp This program will set up the FreeIPA Server.
This includes:
Admin's password * Configure a stand-alone CA (dogtag) for certificate management
* Create and configure an instance of Directory Server
* Create and configure a Kerberos Key Distribution Center (KDC)

* Configure Apache (httpd)

* Configure DNS (bind)

useroot Excluded by options:

* Configure the Network Time Daemon (ntpd)

Service account to use for running the pods

It has to allow running containers as root, for example: oc create
serviceaccount useroot ; oc adm policy add-scc-to-user anyuid -z useroot

FreelPA in OpenShift

github.com/freeipa/freeipa-container/blob/master/*.json

UID-namespacing not yet in OpenShift, coming in 1.6 later this year.

oc login -u system:admin

[...]

Using project "devconf-2017".

oc create serviceaccount useroot

serviceaccount "useroot" created

oc adm policy add-scc-to-user anyuid -z useroot

Create PersistentVolume — hostPath PV example in freeipa-
server-openshift-volume.json

New application — via WebUI if the JSON template was imported, or

oc new-app --name freeipa-x -f ./freeipa-server-openshift.json \
-p IPA SERVER SERVICE=freeipa-1 -p IPA_ADMIN PASSWORD=Secretl23 \
-p IPA SERVER _HOSTNAME=freeipa.example.test \
-p IPA_SERVER IP=172.30.248.14 \
-p IPA_SERVER IMAGE=freeipa-server:centos-7

https://github.com/freeipa/freeipa-container/blob/master/freeipa-server-openshift.json
https://github.com/freeipa/freeipa-container/blob/master/freeipa-server-openshift-volume.json
https://github.com/freeipa/freeipa-container/blob/master/freeipa-server-openshift-volume.json

Notes about FreelPA in OpenShift

Single volume
"volumes": [

{
“name": "${IPA SERVER SERVICE}-data",

"persistentVolumeClaim": {
"claimName": "${IPA SERVER SERVICE}"
}

}I

"volumeMounts": [

{
"name": "${IPA SERVER SERVICE}-data",

"mountPath": "/data"
},

Not available in Online yet due to the need of anyuid for systemd
clusterIP for Service, to expose the non-Web traffic

Master only for now — neither PetSet nor StatefulSet seem to start
the second pod

Complex applications as service

Ultimately, the container should run with read-only filesystem
Some software is not happy with symlinks

SELinux separation is lost — the same type for all processes in the
container

Use of environment variable as initial setup parameters

Native hostname is not what the application wants to use

Conclusion

Server side works
Need to flesh out replication

Can be used as an example for other complex setups that are not
practical to be broken into smaller containers

Client side — SSSD containers exist ...

Consuming them in other services might be tricky

References

github.com/freeipa/freeipa-container
*.json files
hub.docker.com/r/freeipa/freeipa-server/

adelton.com/docs/containers/complex-application-in-container

https://github.com/freeipa/freeipa-container
https://hub.docker.com/r/freeipa/freeipa-server/
https://www.adelton.com/docs/containers/complex-application-in-container

