External authentication for Django projects

Jan Pazdziora
Senior Principal Software Engineer
ldentity Management Engineering, Red Hat
jpazdziora@redhat.com

EuroPython
24" july 2015

@00

Situation

You've developed successful application using Django.
It makes use of users, presumably based on django.contrib.auth.
Now a large organization plans to deploy the application.
All its employees should have access.
Plus associates of its partners and suppliers are to use it.
Desired workflow:
New person joins the organization.
They can immediatelly start using the application.
Preferrably using single sign-on (550).

Authorization derived from group membership in the central system.

Problem statement

Large organizations have existing identity management solutions.
FreelPA/IdM, Active Directory, LDAP servers, ...
With user groups used for access control.
Admins will not create nor manage users in the application manually.
Organizations use standard authentication mechanisms and setups:
Kerberos / GSSAPI
Access cards / X.509 / SSL client authentication
SAML

Organizations often mandate that authentication is done in their
verified frontend setup.

Simple setup

® Assume the application uses django.contrib.auth.

Not logged in :: login :: admin

User Last logon time
bob July 24, 2015, 14:22:27
admin July 24, 2015, 13:51:37

® With django.contrib.auth.views.login and some custom template.

Not logged in :: login :: admin

Username:

Password:

login

Simple setup Jan Pazdziora 4/18

Authentication in frontend HTTP server

We will look at Apache with mod_wsqgi but the story is generic.
AuthType set up in Apache configuration.
It sets REMOTE USER.

Easy answer:
MIDDLEWARE CLASSES = [

‘django.contrib.auth.middleware.AuthenticationMiddleware’,
'django.contrib.auth.middleware.RemoteUserMiddleware’,

]
AUTHENTICATION BACKENDS = [

‘django.contrib.auth.backends.RemoteUserBackend',

]

Oris it?

Limits of RemoteUserMiddleware

It assumes external (Apache) authentication covers all locations/URLSs
that are to be seen as authenticated by the application.

Apache would need to authenticate every request.

Or maintain authentication-related sessions.
You do not want to renegotiate Kerberos upon every HTTP request.
We need Apache authentication on /login URL(s) only.

The django.contrib.auth.views. login does not understand when
RemoteUserMiddleware has already authenticated the user.

It will still show the login form.

Even if the user is authenticated for the request.

Authentication on single URL

Externally-authenticated login URL should initiate authenticated Django
session.

<Location /login/>
AuthType GSSAPI
AuthName "Kerberos Login"
GssapiCredStore keytab:/etc/http.keytab
GssapilLocalName on
Require valid-user
Require pam-account fin-app-prod
</Location>

<Location /login/>
SSLVerifyClient require
</Location>

<Location /login/>
MellonEnable "auth"
</Location>

This way it is easier to fall back to the application-provided login
mechanism if needed, making the external authentication optional.

Make it persistent

New PersistentRemoteUserMiddleware in Django 1.9.

A drop-in replacement for RemoteUserMiddleware:
MIDDLEWARE CLASSES = [

‘django.contrib.auth.middleware.AuthenticationMiddleware’,
‘django.contrib.auth.middleware.PersistentRemoteUserMiddleware',

]

It keeps the user authenticated.

External authentication aware login

Wrap django.contrib.auth.views. login with code actively checking

request.user.is authenticated():
from django.contrib.auth.views import login as auth login
additional imports

def login(request, template name='activity/login.html',
redirect field name=REDIRECT FIELD NAME) :
if hasattr(request, 'user') and request.user.is authenticated():
redirect to = request.POST.get(redirect field name,

request.GET.get(redirect field name, ''))
if not is safe url(url=redirect to, host=request.get host()):
redirect to = resolve url(settings.LOGIN REDIRECT URL)

return HttpResponseRedirect(redirect to)
return auth login(request, template name = template name,
redirect field name = redirect field name)

Have you got idea for better solution?

Chime in in ticket # 25164.

https://code.djangoproject.com/ticket/25164

Additional user attributes

With external authentication, traditionally only the login name is used,
provided in REMOTE USER.

Modern Web applications want to send emails to their users.
Using "<username>@<application's domain>" often does not work.

Modern Web applications would like to make the Ul nice by knowing
user's name.

And other attributes.
Let's introduce REMOTE USER <attribute> variables.

Populating REMOTE_USER <attribute>

For SSSD-based installations, mod_lookup identity can be used:

<Location /login/>
LookupUserAttr mail REMOTE USER EMAIL
LookupUserAttr givenname REMOTE USER FIRSTNAME
LookupUserAttr sn REMOTE USER LASTNAME
</Location>

Note: remapping in ldap user extra attrs could also be used.

For SAML, the mod_auth_mellon module can populate the attributes
from <saml:AttributeStatement>:

<Location /login/>
MellonSetEnvNoPrefix REMOTE USER EMAIL email
MellonSetEnvNoPrefix REMOTE USER FIRSTNAME givenname
MellonSetEnvNoPrefix REMOTE USER LASTNAME surname
</Location>

Consuming attributes in Django

The real code has a few more checks
class RemoteUserAttrMiddleware(RemoteUserMiddleware):
def process request(self, request):
if hasattr(request, 'user') and request.user.is authenticated() \
and user.get username() == request.META[self.header]:
stored backend = load backend(request.session.get(BACKEND SESSION
if isinstance(stored backend, RemoteUserBackend):
email = request.META.get("REMOTE USER EMAIL", None)
if email 1s not None:
request.user.email = email
firstname = request.META.get("REMOTE USER FIRSTNAME", None)
if firstname 1s not None:
request.user.first name = firstname
lastname = request.META.get("REMOTE USER LASTNAME", None)
if lastname is not None:
request.user.last name = lastname
request.user.save()

Upon every login, user in Django's auth user table gets synchronized.

Group-based authorization

Many organizations diligently manage user group membership in their
central identity management system.

They want to be able to assign application-level permissions to groups.
And have group memberships propagated without manual edits.

Plan:

Upon user login, propagate their external group membership into
Django groups starting with ext: prefix.

Application admins will create ext:-prefixed groups for groups that
are relevant for the application and assign permissions to them.

Nonprefixed group are available for local group management.

Populating REMOTE_USER_GROUP_*

For SSSD-based installations, mod_lookup identity can be used:
<Location /login/>

LookupUserGroupIter REMOTE USER GROUP
</Location>

The mod_auth_mellon module can populate attributes from SAML
response:

<Location /login/>

MellonEnvVarsSetCount On

MellonEnvVarsIndexStart 1

MellonSetEnvNoPrefix REMOTE USER GROUP groups
</Location>

Example result:

REMOTE USER GROUP N=2
REMOTE USER GROUP 1l=network-admin-emea
REMOTE USER GROUP 2=network-admin-na

Consuming external groups

extending RemoteUserAttrMiddleware
class RemoteUserAttrMiddleware(RemoteUserMiddleware):
group prefix = ‘'ext:'

def update user groups(self, request):
user = request.user
ext group count = request.META.get("REMOTE USER GROUP N", None)
current groups = {}
for g in user.groups.filter(name startswith=self.group prefix):
current groups[g.name] = ¢
for i in range(1l, int(ext group count) + 1):
if request.META.get("REMOTE USER GROUP " + str(i), None):
g = self.group prefix + request.META["REMOTE USER GROUP " + s
if current groups.has key(g):
del current groups[g]
else:
g obj = Group.objects.filter(name=q)
if g obj:
user.groups.add(g obj[0])
for g in current groups.values():
user.groups.remove(g.id)

Consuming external groups (cont'd)

def process request(self, request):

self.update user groups(request)
request.user.save()

Conclusion

It is possible to support wild combination of authentication methods, by
using authentication frontends.

With PersistentRemoteUserMiddleware, isolated login URLs work.

The login methods need to be checked and possibly amended to
observe the external authentication.

Merely login name in REMOTE USER is often not sufficient.

With custom middleware like RemoteUserAttrMiddleware, user
attributes and group memberships can stay in sync.

When new associate logs in, they can not just do it via SSO, they will
have their account and permissions fully set up, automatically.

No Python code specific to the authentication methods was written.

This is call for comments: do you find the approach useful?

References

www.freeipa.org/page/
Environment Variables#Proposed Additional Variables

www.freeipa.org/page/Web_ App_Authentication
code.djangoproject.com/ticket/25164

www.adelton.com/django/

http://www.freeipa.org/page/Environment_Variables#Proposed_Additional_Variables
http://www.freeipa.org/page/Environment_Variables#Proposed_Additional_Variables
http://www.freeipa.org/page/Web_App_Authentication
https://code.djangoproject.com/ticket/25164
http://www.adelton.com/django/

